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a b s t r a c t 

The main aim of this paper is to connect R-fuzzy sets and type-2 fuzzy sets, so as to provide a prac- 

tical means to express complex uncertainty without the associated difficulty of a type-2 fuzzy set. The 

paper puts forward a significance measure, to provide a means for understanding the importance of the 

membership values contained within an R-fuzzy set. The pairing of an R-fuzzy set and the significance 

measure allows for an intermediary approach to that of a type-2 fuzzy set. By inspecting the returned 

significance degree of a particular membership value, one is able to ascertain its true significance in 

relation, relative to other encapsulated membership values. An R-fuzzy set coupled with the proposed 

significance measure allows for a type-2 fuzzy equivalence, an intermediary, all the while retaining the 

underlying sentiment of individual and general perspectives, and with the adage of a significantly reduced 

computational burden. Several human based perception examples are presented, wherein the significance 

degree is implemented, from which a higher level of detail can be garnered. The results demonstrate that 

the proposed research method combines the high capacity in uncertainty representation of type-2 fuzzy 

sets, together with the simplicity and objectiveness of type-1 fuzzy sets. This in turn provides a practical 

means for problem domains where a type-2 fuzzy set is preferred but difficult to construct due to the 

subjective type-2 fuzzy membership. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The work undertaken by Yang and Hinde (2010) first proposed 

the notion of R-fuzzy sets, the capital ‘R’ distinguishes it from 

r-fuzzy, which was proposed by Li, Wang, and Lee (1996) , yet 

another approach to encapsulate uncertainty. The membership 

value of an element of an R-fuzzy set is represented as a rough 

set. R-fuzzy sets are an extension of fuzzy set theory that allows 

for the uncertain fuzzy membership value to be encapsulated 

within the bounds of an upper and lower rough approximation. 

The lower bound contains the membership values agreed upon by 

all, whereas the upper bound contains membership values agreed 

upon by at least one. Many different variations of uncertainty 

exist in the real world, all of which have their own associated 

difficulties in exacting crisp, clear and concise information. The 

notion of sets in a classical sense incorporates the use of crisp 

boundaries, either a complete inclusion of an element or object, 

or complete exclusion, as was stated by Cantor (1895) . A set was 

created with the specific role of being able to evaluate a member 

of either belonging, or not-belonging. As it was later understood, 
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human nature and inferencing does not work in this way, human 

inferencing is not preformed in such a crisp and precise manner, 

everything is vague to some extent. With this realisation, the 

concept of a classical set did not seem a fitting synthesis for 

human decision making. Something else was needed, ergo, the 

notion of mereology ( Lesniewski, 1929 ), which considered the idea 

of an object being partially included in a set. In mathematics, 

crisp understandings are needed for precise reasoning, this be- 

comes problematic when concepts based on natural language are 

considered. Abstract terms with inherent vagueness and ambiguity 

are often used in our daily communications, therefore reasoning 

cannot be based solely on classical logic. This gave rise to the 

concept of fuzzy theory ( Zadeh, 1975, 1965, 1972 ). Fuzzy logic 

adopts the mantra of mereology, whereby an element can belong 

to a set to some degree, inclusive of its membership function; 

μA (x ) : U → [0 , 1] . Here the element x belongs to the set A by a 

returned value equal to or within the range of [0, 1]. 

One problem that still exists is that of deriving a crisp mem- 

bership function for a standard type-1 fuzzy set, as it may 

involve vagueness and ambiguity, hence why there have been 

many extensions developed in an attempt to overcome this pit- 

fall ( Deschrijver & Kerre, 2003 ). Atanassov intuitionistic fuzzy sets 

( Atanassov, 1986 ), where a degree of membership and degree of 

non-membership are presented. Shadowed sets ( Pedrycz, 1998 ), 
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where the evaluation of a membership is scored as either (1), 

(0) or belonging to the shadowed region [0, 1]. Interval-valued 

fuzzy sets ( Sambuc, 1975 ), where the membership of an individ- 

ual element is characterised as an interval itself. Type-2 fuzzy sets 

( Mendel & John, 2002 ), where the membership function itself is 

a type-1 fuzzy set. These new approaches involve the use of in- 

tervals, multiple parameters and additional fuzzy sets to describe 

the uncertain membership function values of fuzzy sets. However, 

the shortcomings that these approaches share is that they do not 

recognise the difference between values within their intervals or 

shadow areas. 

The ongoing interest in type-2 fuzzy logic as a higher order 

form of fuzzy logic, has received a lot of attention. The use of 

interval type-2 fuzzy logic and the generalised approach of type-2 

fuzzy logic has garnered much interest, particularly for its ability 

to handle higher degrees of uncertainty. As a result, its application 

areas are varied, but considerable work has been undertaken 

in clustering, classification and pattern recognition. A thorough 

review of type-2 fuzzy logic applications was undertaken by Melin 

and Castillo (2014) . The majority of the applications reviewed are 

based on interval-type 2 fuzzy logic, which has less associated 

computational overhead compared to the more computationally 

expensive generalised type-2 approach. As every value in the 

secondary grade of membership is given a membership of 1, only 

the foot-print-of-uncertainty is often used. It can be agreed upon 

that a generalised approach will indeed cater and allow for better 

management of handling uncertainty, compared to that of the 

interval type-2 approach. However, the associated complexities are 

often the reason that an interval type-2 approach is ultimately 

chosen. 

As the work proposed in this paper can be seen as a bridge 

to cater for a generalised type-2 approach, it is noteworthy to ex- 

tend a mention to some of the other current works that allow for 

generalised type-2 equivalence. The work proposed by Melin, Gon- 

zalez, Castro, Mendoza, and Castillo (2014) , applied the theory of 

alpha planes which were used to help create generalised type-2 

fuzzy logic for image detection. Wagner and Hagras (2010) , 2013 ) 

propose the use of z-slices as means to reduce the computational 

burden. Mendel, Liu, and Zhai (2009) proposed the use of alpha 

planes to represent type-2 fuzzy logic sets. 

R-fuzzy sets tackles the problem from a different perspective, 

via the use of rough sets to approximate the uncertain fuzzy mem- 

bership function values of a fuzzy set. By utilising the approxima- 

tion that rough sets employs, R-fuzzy sets allows for the mem- 

bership values of the entire populous to be included. Rough sets 

themselves allow for a different perspective to that of fuzzy sets 

with regards to uncertainty. A rough perspective is with relation to 

ambiguity, a lack of information, whereas a fuzzy approach is more 

akin to vagueness, a lack of sharp definable boundaries. As a re- 

sult there have been several hybridisation between fuzzy sets and 

rough sets to allow for greater versatility in encapsulating uncer- 

tainty; Bodjanova (2007) , Deng, Chen, Xu, and Dai (2007) , Dubois 

and Prade (1990) , Dubois (1980) , Huynh and Nakamori (2005) , 

Jensen and Shen (20 08) , 20 09 ), Nanda and Majumdar (1992) , 

Pawlak and Skowron (2007) , Radzikowska and Kerre (2002) , Sun, 

Ma, and Chen (2014) , Wu, Mi, and Zhang (2003) , Xu, Liu, and Sun 

(2012) , Zeng, Li, Liu, Zhang, and Chen (2015) , all of which mainly 

incorporate the use of equivalence and similarity relations. The no- 

tion of R-fuzzy was the first approach that used rough sets to ap- 

proximate the membership functions of fuzzy sets ( Yang & Hinde, 

2010 ). 

Section 2 will go on to provide the foundational preliminar- 

ies for fuzzy sets, rough sets and R-fuzzy sets, along with their 

associated notations. A worked example involving human per- 

ception regarding noise pollution using an R-fuzzy approach is 

demonstrated. Section 3 introduces the newly derived significance 

degree. The noise pollution example is further extended by the im- 

plementation of the significance measure, to quantify the mean- 

ing and intent of the encapsulated membership values. In addi- 

tion, a human perception based example regarding visualisation 

is also put forward. Section 4 describes the relationships that ex- 

ist between R-fuzzy sets, the significance measure and traditional 

fuzzy sets. The equivalence between the coupling of an R-fuzzy set 

and the significance measure, to that of a type-2 fuzzy set is re- 

marked upon. Section 5 provides the reader with remarks, where 

the strengths and weaknesses of the proposed research are dis- 

cussed, along with theoretical comparisons to other approaches. 

Section 6 draws out the conclusion and summarises upon the ad- 

vantages of using an R-fuzzy approach in conjunction with a sig- 

nificance degree measure for human perception based modelling. 

Final remarks, possible enhancements for future work are also 

discussed. 

1.1. Motivation 

The motivation for this paper comes from the desire to extend 

the applicability of R-fuzzy sets. As a result, the novelty of this pa- 

per is with regards to providing a means to quantify the impor- 

tance of each membership value contained within an R-fuzzy set. 

The newly derived significance measure can also act as a validator 

for values contained within the lower approximation, as the re- 

turned value should be an absolute 1. Equally, if the membership 

values were completely disregarded the returned value would be 

an absolute 0, as they would not be included within the rough 

set. Any returned value within the interval [0, 1] signifies that 

the membership value has some importance to some degree. This 

echoes the sentiment of a typical type-1 fuzzy set and in doing so, 

enhances the overall existing robustness and versatility of R-fuzzy 

sets, increasing its scope for applicability. The better understood a 

problem, the more better equipped the solution. 

According to Klir and Wierman (1998) there exist three kinds of 

general uncertainty. Real world problems often involve uncertainty, 

from an empirical level, uncertainty is often associated with any 

type of measurement. Resolution can be a cause for concern when 

involving exactness; 0.1 is different from 0.01 as it to 0.001, and 

so on. From the cognitive level, uncertainty exists in the vagueness 

and ambiguity associated with natural language. Your understand- 

ing of a word may not have to be exact match to the person you 

are conversing with, suffice to say, an overlap of an understand- 

ing can still act as an agreement of the sentiment nonetheless. At 

the social level, uncertainty can be used to ones advantage, where 

it is often simulated by individuals for different purposes; privacy, 

secrecy and propriety ( Klir & Wierman, 1998 ). 

There could be several root causes for the existence of uncer- 

tainty. The information associated to the problem may be inher- 

ently noisy or incomplete, riddled with contradictions, vague and 

ambiguous. These deficiencies may result in sub-faceted aspects of 

uncertainty, uncertainty within uncertainty. 

Therefore the categorised three states of uncertainty are given 

as vagueness, associated to fuzzy with respect to imprecise, vague 

boundaries of fuzzy sets. Imprecision, this is with regards to non- 

specificty of the cardinalities of sets and their alternatives. Finally, 

discord, with regards to strife which expresses conflicts and con- 

tradictions of the various sets of alternatives ( Klir & Folger, 1988; 

Klir & Wierman, 1998 ). 

Klir and Wierman (1998) then go onto divide the aforemen- 

tioned three main types of uncertainness into two distinct classes, 

fuzziness and ambiguity. These remarks are also echoed by Berenji 

(1988) . The need for higher dimensionality for uncertainty encap- 

sulation makes a generalised type-2 fuzzy logic approach very ap- 

pealing. If one could lessen the burden of complexities of a type-2 

approach, it would allow for a greater scope of applicability. The 
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