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a b s t r a c t 

Many production systems consist of a sequence of processes or stages. For these systems, relational net- 

work DEA can be used and an overall system efficiency (equal to the efficiency of the different processes) 

can be computed. However, there can be alternative solutions that give different estimations of the pro- 

cess efficiencies and therefore lead to different decompositions of the overall system efficiency. It is not 

obvious which efficiency decomposition to use. In this paper, it is shown how a Nash bargaining game 

can be used to compute point estimates of the efficiency of the processes for multistage systems. The 

proposed approach extends and improves over existing approaches for production systems with just two 

stages. The rationality principles behind the proposed solution approach are presented and an interesting 

interpretation of the resulting efficiency decomposition is provided. The fact that this rigorous solution 

approach leads to such a simple and elegant efficiency decomposition should facilitate its adoption by 

Expert and Intelligent Systems practitioners. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Frontier analysis methods aim at benchmarking a set of operat- 

ing units (commonly termed Decision Making Units, DMU) against 

each other so as to identify the best performers (i.e. those that ex- 

hibit the best practices), uncovering and measuring existing ineffi- 

ciencies in the production process. Among frontier analysis meth- 

ods one of the most often used techniques is Data Envelopment 

Analysis (DEA), which is a deterministic, Linear Programming- 

based, non-parametric tool for assessing the relative efficiency of 

the units to be benchmarked. 

Conventional DEA models consider a DMU as a black box that 

directly transforms inputs into outputs. There exist however a 

number of DEA applications in which several interrelated stages 

are distinguished so that intermediate products, internally gener- 

ated and consumed within the system, are also considered. This 

more fine-grained approach is generally labeled Network DEA (e.g. 

Färe & Grosskopf, 1996, 20 0 0 ). Many Network DEA models have 

been proposed in the last years, including, among others, game- 

theory approaches ( Liang, Cook, & Zhu, 2008 ), relational Network 

DEA ( Kao & Hwang, 2008, 2010 ), weighted additive efficiency de- 
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composition ( Chen, Cook, Li, & Zhu, 2009; Cook, Zhu, Bi, & Yang, 

2010 ), Network Slack-Based Measure (NSBM) of efficiency ( Lozano, 

2015b; Tone & Tsutsui, 2009 ), Slacks-Based Inefficiency measure 

( Fukuyama & Weber, 2010 ), scale and cost network DEA efficiency 

( Lozano, 2011 ), dynamic Network DEA ( Tone & Tsutsui, 2014 ), 

Malmquist index approach ( Kao & Hwang, 2014 ), etc. Kao (2014b) 

and Halkos, Tzeremes, and Kourtzidis (2014) provide extensive and 

up-to-date reviews of Network DEA models. As regards network 

DEA applications, the list is also long and includes many sec- 

tors like banking (e.g. Wanke & Barros, 2014; Kwon & Lee, 2015; 

Lozano, 2015c ), environmental performance (e.g. Lozano, 2015a ), 

transportation (e.g. Lozano & Gutirrez, 2014 ), sports (e.g. Moreno 

& Lozano, 2014 ), etc. 

Some of the proposed Network DEA models are based on the 

so-called multiplier DEA formulation. These models may have mul- 

tiple alternative optima and therefore alternative efficiency decom- 

positions are possible (see, e.g. Kao & Hwang, 2008; Liang et al., 

2008 ). This problem can also affect the decomposition into tech- 

nical and scale efficiencies ( Kao & Hwang, 2011 ) and not only in 

the case of two-stage systems, but also in the case of the effi- 

ciency decomposition of general multistage systems ( Kao, 2014a ). 

In this type of production systems in series the overall system ef- 

ficiency is the product of the efficiency of the different processes. 

Expressing the overall system efficiency as the product of the pro- 

cess efficiency is called efficiency decomposition. The problem is 
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Fig. 1. Production process of DMU j ( j = 1 , 2 , . . . , n ). 

that there can be different process efficiency scores that corre- 

spond to the same level of overall efficiency. This means that there 

can be multiple alternative efficiency decompositions and it is not 

obvious which efficiency decomposition to use. 

In the case of two-stage systems, some authors have proposed 

different ways of solving the uncertainty about how the processes 

efficiencies should be computed. One approach is to compute the 

best and worst possible efficiency scores of each process, by choos- 

ing the best score for one process and the worst for the other pro- 

cess, depending on which process efficiency is the decision maker 

more concerned with (see, e.g., Liang et al., 2008; Kao & Hwang, 

2014 ). The problem with this approach is that the analyst has to 

establish an order or ranking of the importance of the processes, 

something which is neither easy nor practical in the case of more 

than two stages. Recently, Despotis, Sotiros, and Koronakos (2014 , 

2015) have approached the efficiency decomposition problem from 

a multiobjective perspective. They propose a model for comput- 

ing an Ideal Point with the largest possible efficiency scores of 

each stage and then use the lexicographic weighted Chebycheff

method to determine the process efficiencies. An important fea- 

ture of this approach is that it can be applied to general multistage 

networks. 

Another alternative also proposed in the case of two-stage sys- 

tems is to look for efficiency decompositions based on game theory 

and which can be regarded as ”fair” in relation to some rationality 

principles. Thus, Liang et al. (2008) proposed a Stackelberg game. 

This type of leader-follower game is difficult to extend also in the 

case of multistage systems and, again, would imply an ordering of 

the importance of the different processes. 

Following a different venue, but also for the case of two-stage 

systems, Du, Liang, Chen, Cook, and Zhu (2011) and Zhou, Sun, 

Yang, Liu, and Ma (2013) have proposed the use of the Nash bar- 

gaining solution ( Nash, 1950 ). This is a cooperative game approach 

and, in principle, can be extended to the multistage systems. This 

is what our paper aims at, but in order to compute a solution 

for the efficiency decomposition and to identify the properties 

on which it is supported, the so called Nash extension solution 

( Conley & Wilkie, 1996 ) is considered. This is so because, as it is 

shown in the paper, the efficiency decomposition feasibility region 

is not convex and therefore the conventional Nash solution used in 

Du et al. (2011) and Zhou et al. (2013) is not appropriate. We prove, 

however, that for this class of problems, the decomposition gener- 

ated by the Nash extension solution coincides with that obtained 

by applying the Nash solution and can be computed by using a 

simple and elegant formula. We also provide the interpretation of 

the properties that the solution fulfills in this context. Summariz- 

ing this point, there is not currently any approach for efficiency 

decomposition of multistage production systems with more than 

two stages and of those methods that have been proposed for two- 

stage systems some are not workable for multiple stages and oth- 

ers can be extended but with caution and with the appropriate 

adjustments as discussed in this paper. 

The structure of the rest of the paper is the following. In 

Section 2 the Network DEA models to compute the overall effi- 

ciency of the system, as well as those which permit to determine 

the best and worst process efficiencies are presented. Section 3 , in- 

cludes a brief review of the bargaining theory needed to develop 

our results. In Section 4 , the proposed approach is presented and 

discussed. Section 5 contains numerical examples to illustrate the 

approach, while Section 6 summarizes and concludes. 

2. Efficiency decomposition in a multistage system 

Consider a DEA model in which each DMU is a series produc- 

tion system organized internally as a sequence of P processes or 

stages. For each DMU j , j = 1 , 2 , . . . , n, 

(i) x j = (x j1 , x j2 , . . . , x jm 

) t represents the vector of m exogenous 

inputs, which are the inputs of the first sub-process, 

(ii) for each sub-process p = 1 , 2 , . . . , P − 1 , z 
p 
j 

= (z 
p 
j1 

, z 
p 
j2 

, . . . , 

z 
p 
jr(p) 

) t represents the output vector from stage p , which is 

the only input vector to the stage p + 1 , 

and 

(iii) y j = (y j1 , y j2 , . . . , y js ) 
t represents the vector of the s outputs 

resulting from the last sub-process, P , which are the final 

outputs corresponding to DMU j . 

For each j = 1 , 2 , . . . , n, the exogenous inputs, x j , and the final 

outputs, y j , are denoted respectively by z 0 
j 

and z P 
j 
. Denote also the 

number of exogenous inputs, m , and the number of final outputs, s , 

of each DMU by r (0) and r ( P ), respectively. The production process 

of each DMU, j ( j = 1 , 2 , . . . , n ), can be represented as shown in the 

Fig. 1 : 

The efficiency score of a specific DMU, J ∈ { 1 , 2 , . . . , n } , in the 

multistage system can be computed by solving the following opti- 

mization problem: 

E(J) = max 

∑ r(P) 
r=1 

w 

P 
Jr z 

P 
Jr ∑ r(0) 

r=1 
w 

0 
Jr 

z 0 
Jr 

s.t. 

∑ r(p) 
r=1 

w 

p 
Jr 

z p 
jr ∑ r(p−1) 

r=1 
w 

p−1 
Jr 

z p−1 
jr 

≤ 1 , ∀ j = 1 , 2 , . . . , n, ∀ p = 1 , . . . , P ;

w 

p 
Jr 

≥ 0 , ∀ p = 0 , 1 , . . . , P, ∀ r = 1 , 2 , . . . , r(p) . (1) 

where, for each p = 0 , 1 , . . . , P, w 

p 
J 

are the vectors of weights for 

the exogenous inputs ( w 

0 
J 

∈ I R 

r(0) 
+ ), intermediate products ( w 

p 
J 

∈ 

I R 

r(p) 
+ , p = 1 , 2 , . . . , P − 1 ), and final outputs ( w 

P 
J ∈ I R 

r(P) 
+ ), respec- 

tively. 

By using Charnes and Cooper ’s (1962) transformation, and 

maintaining the notation z 
p 
jr 

to represent the variables in the new 
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