
Symbolic model checking composite Web services using operational
and control behaviors

Jamal Bentahar a,b,⇑, Hamdi Yahyaoui c, Melissa Kova d, Zakaria Maamar e

a Concordia University, Concordia Institute for Information Systems Engineering, Montreal, Canada
b Khalifa University of Science, Technology and Research, College of Engineering, Abu Dhabi, United Arab Emirates
c Kuwait University, Computer Science Department, Kuwait
d Ubisoft Divertissement, Montreal, Canada
e Zayed University, College of Information Technology, Dubai, United Arab Emirates

a r t i c l e i n f o

Keywords:
Composite Web service
Behavior
Soundness
Completeness
Symbolic model checking
NuSMV

a b s t r a c t

This paper addresses the issue of verifying if composite Web services design meets some desirable prop-
erties in terms of deadlock freedom, safety (something bad never happens), and reachability (something
good will eventually happen). Composite Web services are modeled based on a separation of concerns
between business and control aspects of Web services. This separation is achieved through the design
of an operational behavior, which defines the composition functioning according to the Web services’
business logic, and a control behavior, which identifies the valid sequences of actions that the operational
behavior should follow. These two behaviors are formally defined using automata-based techniques. The
proposed approach is model checking-based where the operational behavior is the model to be checked
against properties defined in the control behavior. The paper proves that the proposed technique allows
checking the soundness and completeness of the design model with respect to the operational and con-
trol behaviors. Moreover, automatic translation procedures from the design models to the NuSMV model
checker’s code and a verification tool are reported in the paper.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Web services are widely used for developing Business-to-Busi-
ness applications whose performance spreads by default over orga-
nizations’ boundaries. Indeed, Web services rely on a set of
platform-independent and vendor-neutral specifications that offer
the necessary means for their description, discovery, invocation,
and mainly composition (Yang, Zhang, & Lan, 2007). Despite the
great interest of the research and industry communities in Web
services, some challenging issues remain pending and hence, hin-
der the adoption of Web services to develop robust, dynamic,
and safe business applications. Examples of issues include verifica-
tion and model checking (Lomuscio, Qu, & Solanki, 2008, 2011;
Rouached, Fdhila, & Godart, 2010; Yeung, 2011), reliability (Bhiri,
Perrin, & Godart, 2005; Zhang & Zhang, 2005), security (Yahyaoui,
2012), transaction handling (Zhao, Kart, Moser, & Melliar-Smith,
2008), service discovery (Fardin, Naser, & Ali, 2012; Tian & Huang,
2012), and last but not least context awareness of interaction

management (Handorean, Sen, Hackmann, & Roman, 2006). The
severity of these issues intensifies when several component Web
services are put together to form composite Web services (Bensli-
mane, Maamar, & Ghedira, 2006; Maamar, Benslimane, Cherida, &
Mrissa, 2005).

In this paper, we address the ‘‘thorny’’ issue of verifying the de-
sign of composite Web services. Developing business applications
that end-users trust requires a deep investigation of the different
and independent operations and behaviors that the component
Web services in a composition execute and exhibit, respectively.
For instance, having a deadlock in a Web service-based business
transaction is a simply disaster for all stakeholders. Although soft-
ware vendors can guarantee the safety of their Web services, the
development, testing, and verification of these Web services are
done independently from other vendors’ peers, which means a
serious lack of how these Web services behave when put together.
To tackle this problem, we use model checking, a powerful formal
and fully automatic technique for the verification of system models
against specified properties in an early stage in the system lifecy-
cle. Compared to other verification techniques such as code
reviewing and testing, model checking is the only technique that
provides a formal proof and thus a guarantee that the system is
sound with respect to the checked properties. Using this technique,
the Web services composition model, which captures the behavior

0957-4174/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2012.07.069

⇑ Corresponding author. Address: Concordia University, Concordia Institute for
Information Systems Engineering, 1515 Ste-Catherine Street West, EV7.640, Mon-
treal, Quebec, Canada H3G 2W1.

E-mail addresses: bentahar@ciise.concordia.ca (J. Bentahar), hamdi@sci.kuniv.
edu.kw (H. Yahyaoui), melissa.kova@ubisoft.com (M. Kova), zakaria.maamar@zu.
ac.ae (Z. Maamar).

Expert Systems with Applications 40 (2013) 508–522

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2012.07.069
mailto:bentahar@ciise.concordia.ca
mailto:hamdi@sci.kuniv. edu.kw
mailto:hamdi@sci.kuniv. edu.kw
mailto:melissa.kova@ubisoft.com
mailto:zakaria.maamar@zu. ac.ae
mailto:zakaria.maamar@zu. ac.ae
http://dx.doi.org/10.1016/j.eswa.2012.07.069
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


of this composition, can be investigated to check if it satisfies desir-
able properties such as reacheability and safety, and does not satisfy
undesirable properties such as deadlock. The problem of model
checking is formally denoted by M �u, where M is the system
model, u a property, and � the satisfaction symbol, meaning that
the model M satisfies the property u. In model checking ap-
proaches (Cimatti et al., 2002; Clarke, Grumberg, & Peled, 1999),
M is represented in a formal language capturing the system’s
dynamics and u, against which the model is checked, is expressed
in a given logic such as Linear Temporal Logic (LTL) and Computation
Tree Logic (CTL) (Emerson, 1990). The verification technique exam-
ines all possible executions of the model. In this paper, we focus on
a particular technique of model checking referred to as symbolic. In
symbolic model checking, the model and properties are not explic-
itly represented as automata, but implicitly and symbolically en-
coded using Boolean functions and binary decision diagrams,
which alleviates the state explosion problem, the main drawback
of automata-based techniques (Clarke et al., 1999).

As pointed out in many proposals, for instance (Meng & Arbab,
2007; Peltz, 2003; Zhou, Huang, & Wang, 2007), two composition
approaches dominate service-oriented computing: choreography
and orchestration. On the one hand, choreography identifies the
set of acceptable conversations for a composite Web service with-
out allocating a specific Web service to monitor the composition
progress. It captures the global view of the composition by focus-
ing on the coordination and multi-participant perspectives. On
the other hand, orchestration is an executable specification that
identifies the steps of execution for the peers where one particu-
lar party monitors the execution of such a specification. It cap-
tures the local view of the composition from one participant
perspective. Although the approach we propose in this paper is
choreography-oriented because it stresses the coordination and
conversation among Web services in a global perspective, it is
still general enough and can be applied to orchestration as well,
as far as the design model, which is needed for model checking,
is fully available.

To better model compositions, we build upon the idea of sepa-
rating concerns that model, at different levels of abstractions, two
different behaviors of Web services: operational and control (Yahy-
aoui, Maamar, & Boukadi, 2010; Sheng, Maamar, Yahyaoui, Benta-
har, & Boukadi, 2010). From the perspective of single Web services,
the operational behavior is application-dependent; it defines the
business logic underpinning a Web service operation at a low level
of abstraction by specifying the functions the Web service should
perform, and the control behavior is application-independent; it
defines at a high level of abstraction a general design pattern of
the Web service and guides and monitors the execution progress
of the operational behavior by identifying the actions to take and
constraints, if any, to satisfy. Compared to design patterns, the con-
trol behavior is not implementable, so not directly transformable
to executable code, but helps design the operational behavior,
which is implementable. These two behaviors implement the sep-
aration of concerns between the business logic details and the ab-
stract control logic of a Web service. The motivation behind such a
separation is to enhance the current design practices of Web ser-
vices that are prone to errors since the architectural and opera-
tional perspectives are treated at the same level, which increases
the design and management complexity. From the design pattern
perspective, the control behavior, when synchronized with the
operational behavior, guarantees that design requirements and
constraints are considered and good practices are being used. Dis-
sociating the operational behavior from the control behavior per-
mits to assess at design time the impact of any change in the
business logic on the control behavior as shown in Sheng et al.
(2010). Thus, any change in the operational behavior that does
not impact the synchronization with the control behavior is

allowable as it reflects the continuous fulfillment of the design pat-
tern. The control behavior controls then the flexibility of the busi-
ness logic and serves as a tool for analyzing the sensibility of the
Web service to design changes. For example, if a new business rule
has to be incorporated in the Web service’s functionality, this will
not affect the control behavior. The main advantage of such a prac-
tice is to provide service engineers with a means to monitor the
execution of the Web service and identify and address design prob-
lems at an early stage.

In a previous work (Yahyaoui et al., 2010), the control and oper-
ational behaviors have been thoroughly investigated in the context
of individual Web services, i.e., isolated from other peers in the
same composition. The authors generalized this separation to the
composite scenarios extending the separation framework pro-
posed in Kova, Bentahar, Maamar, and Yahyaoui (2009). Unlike
the control behavior of isolated Web services that focuses on the
internal behavior of an individual Web service, the control behav-
ior of a composition focuses on the interactions among different
Web services. The control behavior of a composition shapes the
design pattern of this composition; it is application independent
and hence, applicable to a wide range of compositions of Web ser-
vices. Its objective is to frame, control, and monitor the business
logic execution as it provides the guidelines for an appropriate
composition behavior. Based on the principle of separation of con-
cerns (Kambayashi & Ledgard, 2004), this behavior is designed
without updating the operational behavior that captures the busi-
ness logic of the composition. This behavior facilitates the reus-
ability of composition scenarios as it is independent from any
specific business case. The operational behavior describes then
the business logic of a specific composite scenario by identifying
the functions to perform and messages to exchange among the
components, while the control behavior identifies, in an applica-
tion-independent perspective, the valid actions and sequences that
the operational behavior should follow. Similar to the case of iso-
lated Web services, if a new composition constraint has to be
added to the composition business logic, the control behavior will
not be affected, but used to enable or disable such a constraint. In
this paper, the formal machinery of this composition-oriented sep-
aration of behaviors is defined in order to be automatically verified.
This automatic verification raises fundamental challenges. For in-
stance, the control behavior of a Web service can be in interaction
with the operational behavior of another one, which is involved in
the same composition. This leads to the need of specifying valid
interactions. We map the control behavior onto the operational
behavior in order to verify the soundness and completeness of
the composition process if the two behaviors are synchronized.
We use symbolic model checking technique to implement this
verification by checking if the model of the operational behavior
satisfies the properties generated from the control behavior.

The contributions of this work are twofold:

1. Proposal of an automata-theoretic approach for modeling
composite Web services based on control and operational
behaviors. Both are linked together to check that the con-
versation sequences of the operational behavior, which
implement the business logic, are synchronized with the
valid sequences, called executions, specified by the control
behavior (soundness checking) and vise-versa (complete-
ness checking). We use statecharts enhanced with addi-
tional syntax to facilitate the mapping process between
both behaviors.

2. Formal and automatic verification of the mapping procedure
using symbolic model checking techniques. The implemen-
tation is done using a Java-based translation procedure,
which is proven to be sound, and NuSMV model checker
(Cimatti et al., 2002).

J. Bentahar et al. / Expert Systems with Applications 40 (2013) 508–522 509



Download	English	Version:

https://daneshyari.com/en/article/383205

Download	Persian	Version:

https://daneshyari.com/article/383205

Daneshyari.com

https://daneshyari.com/en/article/383205
https://daneshyari.com/article/383205
https://daneshyari.com/

