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a b s t r a c t

Expert systems often rely heavily on the performance of binary classification methods. The need for ac-

curate predictions in artificial intelligence has led to a plethora of novel approaches that aim at correctly

predicting new instances based on nonlinear classifiers. In this context, Support Vector Machine (SVM)

formulations via two nonparallel hyperplanes have received increasing attention due to their superior

performance. In this work, we propose a novel formulation for the method, Nonparallel Hyperplane SVM.

Its main contribution is the use of robust optimization techniques in order to construct nonlinear mod-

els with superior performance and appealing geometrical properties. Experiments on benchmark datasets

demonstrate the virtues in terms of predictive performance compared with various other SVM formula-

tions. Managerial insights and the relevance for intelligent systems are discussed based on the experi-

mental outcomes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Support Vector Machine is one of the most popular tools used

for prediction in intelligent systems. Its superior performance and

flexibility are appealing virtues that lead to numerous extensions.

SVM has proved to be very effective in various expert systems ap-

plications, such as medical diagnosis (Ríos & Erazo, 2016), churn

prediction (Ali & Aritürk, 2014), and human resources analytics

(Saradhi & Palshikar, 2011).

Recently, second-order cone programming (SOCP) has been

used not only as an alternative optimization scheme for SVM

(Debnath, Muramatsu, & Takahashi, 2005), but also to derive robust

formulations that follow the SVM principle of maximum margin

(Maldonado & López, 2014a; Nath & Bhattacharyya, 2007). The goal

of such models is to construct one that correctly classifies most in-

stances of each training pattern even for the worst distribution of

the class-conditional densities with a given mean and covariance

matrix. Such methods have proved to be very effective in terms of

classification performance (Maldonado & López, 2014b).

On the other hand, there is a promising new stream of re-

search that extends SVM to constructing two nonparallel hyper-

planes in such a way that each one is close to one of the classes,
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and as far as possible from the other. The most popular approach

is Twin SVM (Jayadeva, Khemchandani, & Chandra, 2007; Shao,

Zhang, Wang, & Deng, 2011), while some other extensions, such

as Nonparallel Hyperplane SVM (NH-SVM) (Shao, Chen, & Deng,

2014), have also been proposed in the literature, claiming success-

ful results. Twin SVM splits the original problem into two smaller

subproblems, and the two hyperplanes are constructed indepen-

dently. In contrast, NH-SVM solves a single problem to obtain both

classifiers simultaneously.

In this work, we propose a novel SVM-based method that ex-

tends the ideas of NH-SVM to second-order cones. The approach

constructs two nonparallel classifiers, and represents each train-

ing pattern by an ellipsoid characterized by the mean and covari-

ance of each class, instead of the reduced convex hulls used in NH-

SVM. Originally developed for linear classifiers, the method is also

adapted to construct nonlinear classification functions via the ker-

nel trick. The use of ellipsoids for SVM modeling has been applied

successfully in the context of expert systems (Czarnecki & Tabor,

2014).

This paper is organized as follows: in Section 2 we present

the relevant SVM formulations for this work: Twin SVM, NH-SVM,

and SOCP-SVM. The proposed method based on SOCP for Non-

parallel Hyperplane SVM is described in Section 3. Experimental

results using seven benchmark data sets are given in Section 4.

Finally, Section 5 provides the main conclusions of this work, dis-

cussing managerial insights and addressing future developments in

the context of expert and intelligent systems.
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2. Prior work in SVM classification

In this section, we discuss the relevant SVM formulations in

this work: standard soft-margin SVM (Cortes & Vapnik, 1995), Twin

SVM (Jayadeva et al., 2007; Shao et al., 2011), Nonparallel Hyper-

plane SVM (Shao et al., 2014), and SVM based on second-order

cone programming (Nath & Bhattacharyya, 2007).

2.1. Soft-margin support vector machine

Given a set of training examples and their respective labels (xi,

yi), where xi ∈ �n, i = 1, . . . , m and yi ∈ {−1,+1}, the soft-margin

SVM formulation aims at finding a classification function of the

form f (x) = w�x + b by solving the following quadratic program-

ming problem (QPP):

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi

s.t. yi · (w�xi + b) ≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0, i = 1, . . . , m, (1)

where ξ ∈ �m is a set of slack variables and C > 0 is a regulariza-

tion parameter.

A non-linear classification function can be obtained via the Ker-

nel Trick on the dual of Formulation (1) (Schölkopf & Smola, 2002).

This kernel-based SVM formulation follows:

max
α

m∑
i=1

αi − 1

2

m∑
i,s=1

αiαsyiysK(xi, xs)

s.t.

m∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , m, (2)

where α ∈ �m is the set of dual variables corresponding to the

constraints in (1). In this work we use the Gaussian kernel, which

usually lead to best empirical results (see e.g. Maldonado, Weber,

and Basak (2011); Schölkopf and Smola. (2002)), and has the fol-

lowing form:

K(xi, xs) = exp

(
−||xi − xs||2

2σ 2

)
, (3)

where σ is a parameter that controls the width of the kernel

(Schölkopf and Smola. (2002)).

2.2. Twin support vector machine

The twin SVM performs classification by using two nonparallel

hyperplanes obtained by solving two smaller-sized QPPs (Jayadeva

et al., 2007). Let us denote the cardinality of the positive (nega-

tive) class by m1 (m2), and by A ∈ �m1×n (B ∈ �m2×n) the data ma-

trix related to the positive (negative) class. The linear Twin SVM

formulation follows:

min
w1,b1,ξ2

1

2
‖Aw1 + e1b1‖2 + c1

2
(‖w1‖2 + b2

1) + c3e�
2 ξ2

s.t. − (Bw1 + e2b1) ≥ e2 − ξ2,

ξ2 ≥ 0, (4)

and

min
w2,b2,ξ1

1

2
‖ Bw2 + e2b2‖2 + c2

2

(‖ w2‖2 + b2
2

)
+ c4e�

1 ξ1

s.t. (Aw2 + e1b2) ≥ e1 − ξ1,

ξ1 ≥ 0.

(5)

Formulation (4)–(5) constructs two hyperplanes w�
k

x + bk = 0,

k = 1, 2, such that each one is closer to instances of one of the

two classes and is as far as possible from those of the other class.

A new data point x is assigned to k∗ according to its proximity to

the hyperplanes based on the following rule:

k∗ = argmin
k=1,2

{
dk(x) := |w�

k x + bk|
‖wk‖

}
, (6)

where dk corresponds to the perpendicular distance of the data

sample x from hyperplane w�
k

x + bk = 0, k = 1, 2. The scalars c1,

c2, c3, and c4 are positive parameters, and e1 and e2 are vec-

tors of ones of appropriate dimensions. We refer to Formulation

(4)–(5) as Twin-Bounded SVM (TB-SVM) (Shao et al., 2011), which

extends the original Twin SVM (TW-SVM) formulation (Jayadeva

et al., 2007). Both problems are equivalent if c1 = c2 = ε, with ε >

0 a fixed small parameter. The dual formulation of Twin-Bounded

SVM can be found by Shao et al. (2011).

The linear Twin SVM can be extended to non-linear classifi-

cation surfaces of the form K(x, X)uk + bk = 0 (k = 1, 2) via ker-

nel functions by solving the following quadratic problems (kernel-

based Twin SVM):

min
u1,b1,ξ2

1

2

∥∥K(A�, X)u1 + e1b1

∥∥2 + c1

2
(‖u1‖2 + b2

1) + c3e�
2 ξ2

s.t. − (K(B�, X)u1 + e2b1) ≥ e2 − ξ2, (7)

ξ2 ≥ 0,

and

min
u2,b2,ξ1

1

2

∥∥K(B�, X)u2 + e2b2

∥∥2 + c2

2
(‖u2‖2 + b2

2) + c4e�
1 ξ1

s.t. (K(A�, X)u2 + e1b2) ≥ e1 − ξ1, (8)

ξ1 ≥ 0,

where X = [A� B�] ∈ �n×m is the matrix that combines both train-

ing patterns sorted by class, and K : �n × �n → � is a kernel func-

tion (Schölkopf and Smola. (2002)).

2.3. Nonparallel hyperplane SVM (NH-SVM)

The NH-SVM approach constructs two nonparallel hyperplanes

simultaneously by solving a single QPP. Similarly to Twin SVM, the

linear NH-SVM formulation finds two hyperplanes in �n such that

each classifier is close to one of the training patterns and is as far

as possible from the other. The main difference compared to Twin

SVM is that, since one single QPP is constructed, both hyperplanes

are simultaneously optimized in the same formulation. The linear

NH-SVM formulation follows:

min
wk,bk,ξk

k=1,2

1

2

(‖Aw1 + e1b1‖2 + ‖Bw2 + e2b2‖2
)

+ c1

2

(‖w1‖2 + b2
1 + ‖w2‖2 + b2

2

)
+ c2

2

(
e�

1 ξ1 + e�
2 ξ2

)
s.t. Aw1 + e1b1 − Aw2 − e1b2 ≥ e1 − ξ1,

Bw2 + e2b2 − Bw1 − e2b1 ≥ e2 − ξ2, (9)

ξ1 ≥ 0, ξ2 ≥ 0,

where c1, c2 > 0 are regularization parameters (Shao et al., 2014).

A point x in �n is assigned to class k∗ by identifying the nearest

hyperplane according to Eq. (6).

The computation of the Lagrangian and the Karush–Kuhn–

Tucker (KKT) conditions leads to the following dual formulation for

Problem (9):

max
α

e�α − 1

2
α�Ā�[

(H�H + c1I)−1 + (G�G + c1I)−1
]
Āα,

s.t. 0 ≤ α ≤ c2e,
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