
Hybridizing VNS and path-relinking on a particle swarm framework
to minimize total flowtime

Wagner Emanoel Costa a,⇑, Marco César Goldbarg b, Elizabeth G. Goldbarg b

a Programa de Pós-Graduação em Sistemas e Computação – UFRN/CCET/PPGSC, Campus Universitário, Lagoa Nova, Natal, RN, Brazil
b Departamento de Informática e Matemática Aplicada – UFRN/CCET/DIMAp, Campus Universitário, Lagoa Nova, Natal, RN, Brazil

a r t i c l e i n f o

Keywords:
Flowshop
Scheduling
Total flowtime
Heuristics
PSO

a b s t r a c t

This paper presents a new hybridization of VNS and path-relinking on a particle swarm framework for the
Permutational Flowshop Scheduling Problem with total flowtime criterion. The operators of the proposed
particle swarm are based on path-relinking and variable neighborhood search methods. The performance
of the new approach was tested on the benchmark suit of Taillard, and five novel solutions for the bench-
mark suit are reported. The results were compared against results obtained using methods from litera-
ture. Statistical analysis favors the new particle swarm approach over the other methods tested.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Permutational Flowshop Scheduling Problem (PFSP) with
the total flowtime criterion (TFT) is a NP-hard Combinatorial Opti-
mization Problem (Garey, Johnson, & Sethi, 1976; Graham, Lawler,
Lenstra, & Kan, 1979) that deals with the scheduling of a set of jobs,
J, through a set of machines, M. Every job has to be processed on all
machines following the same machine sequence. Each job requires a
definite machine-processing time and can be processed on one ma-
chine at a time. Each machine processes only one job at a time. Once
a machine starts processing a job, no preemption is allowed, and the
machine becomes available as soon as the operation is finished. The
goal is to produce a schedule of jobs such that the sum of completion
times is minimized. Many methods have been proposed to address
this problem. There are constructive methods (Framinan, Leisten, &
Ruiz-Usano, 2002; Framinan & Leisten, 2003; Laha & Sarin, 2009; Liu
& Reeves, 2001; Nagano & Moccellin, 2007; Rajendran & Ziegler,
1997), local search methods (Dong, Huang, & Chen, 2009), iterated
greedy approach (Pan, Tasgetiren, & Liang, 2008), genetic algo-
rithms (Duan, Zhang, Qiao, & qing Li, 2011; Xu, Xu, & Gu, 2011;
Zhang, Li, & Wang, 2009a), ant colonies (Rajendran & Ziegler,
2004; Zhang, Li, Wang, & Zhu, 2009b), particle swarm optimization
(Liao, Tseng, & Luarn, 2007; Jarboui, Ibrahim, Siarry, & Rebai, 2008;
Tasgetiren, Liang, Sevkli, & Gencyilmaz, 2007), bee colony optimiza-
tion (Tasgetiren, Pan, Suganthan, & Chen, 2010), VNS (Costa, Gold-
barg, & Goldbarg, 2012; Jarboui, Eddaly, & Siarry, 2009), hybrid
EDA approaches (Jarboui et al., 2009; Zhang & Li, 2011), hybrid dis-
crete differential evolutionary algorithm (Tasgetiren et al., 2010)
and parallel simulated annealing (Czapinski, 2010).

The particle swarm optimization (PSO) is a metaheuristic pro-
posed by Eberhart and Kennedy (1995) for continuous optimiza-
tion. Due to its simplicity it has been adapted to many discrete
optimization problems including the PFSP (e.g. Liao et al., 2007;
Jarboui et al., 2008; Tasgetiren et al., 2007).

The PSO approach was based on models explaining the synchro-
nous movements in a flock of birds. In those models the birds at-
tempt to keep an optimal distance from each other so they can
be close enough to profit over the discoveries and previous experi-
ence of a neighboring bird, and at the same time avoiding the com-
petition for food (Eberhart & Kennedy, 1995).

The proposed discrete PSO is based on the work of Goldbarg,
Goldbarg, and de Souza (2008) for the Traveling Salesman Problem.
Therefore, the cited metaphor is translated into an optimization
method as follow. Agents, named particles, fly over the solution
space. A particle occupies a position on the solution space. The posi-
tion of a particle represents a valid solution currently under exam, it
is encoded as a permutation of jobs (P), and it has a objective value
associated to it, named TFT(P). Besides knowing their current posi-
tion, the particle knows the best site (solution) it previously visited,
knows the current position of a neighboring particle, and the best
sites previously visited by a neighbor. On any given iteration of
the method, each particle will compromise in doing one of the fol-
lowing actions: (a) to explore the solution space on its own; (b) to
move towards the current site of a neighboring bird; (c) to move to-
wards the best site previously visited by a neighboring bird. A prob-
ability is assigned to each possible action. During execution those
probabilities are updated, the update process takes into account
the quality of the last solution obtained through each action.

The actions of the particles are implemented using search oper-
ators such as variable neighborhood search procedure (VNS) and
path-relinking. Given a particle A, if A chooses to explore the search
space on its own, A copies the configuration of the best previous site

0957-4174/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2012.05.090

⇑ Corresponding author.
E-mail addresses: wemano@gmail.com (W.E. Costa), gold@dimap.ufrn.br

(M.C. Goldbarg), beth@dimap.ufrn.br (E.G. Goldbarg).

Expert Systems with Applications 39 (2012) 13118–13126

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2012.05.090
mailto:wemano@gmail.com
mailto:gold@dimap.ufrn.br
mailto:beth@dimap.ufrn.br
http://dx.doi.org/10.1016/j.eswa.2012.05.090
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


it visited PA,Best to its current position PA,Curr, a VNS procedure is exe-
cuted over P0, the resulting solution becomes the current position of
A, PA,Curr. If the particle chooses to move towards a neighboring solu-
tion B, the second possible action, a combination of path-relinking
procedure with VNS is executed. Initially, the path-relinking gradu-
ally transforms the current position PA,Curr (solution) of particle A in
the position PB,Curr, occupied by the neighboring particle B. If during
this process an intermediate solution P0A;Curr is found, such that the
value of its objective function is smaller than the objective function
values of PA,Curr and PB,Curr, then path-relinking is interrupted and
the VNS procedure is executed over P0A;Curr , resulting in P00A;Curr . After
VNS finishes, path-relinking is resumed transforming P00A;Curr into
PB,Curr. A new interruption may occur if a solution better than both
P00A;Curr and PB,Curr is found. The action concludes when no further
improvement is found during path-relinking. The third action is
implemented similarly to the second action, however in this case
the target position is the best site visited by the neighboring particle
B (PB,Best) instead of its current position (PB,Curr).

The remainder of this article is organized into three sections. In
Section 2 the description of the problem is given. Section 3 de-
scribes the hybrid algorithm proposed for the PFSP with TFT crite-
rion. Section 4 addresses the experiments carried out to tune
parameters involved in proposed approach. Section 5 presents
computational experiments comparing the proposed PSO with
two state-of-the-art methods from literature. Statistical analysis
over the results indicates significant differences favoring of the
proposed PSO over two state-of-the-art approaches. Finally, some
conclusions are presented in Section 6.

2. Problem

As stated earlier, in the permutation flowshop context a set of
jobs J = {1, . . . ,n} will be processed by a set of machines
M = {1, . . . ,m} in sequence. Job j has a processing time of Tjr on ma-
chine r, 1 6 j 6 n, 1 6 r 6m. Let the permutation P = {p1,p2, . . . ,pn}
denotes the job-processing order, and pi corresponds to the ith job
on the schedule P. The completion time of job pi on machine r, de-
noted by C(pi,r), is given by the time elapsed since the first job be-
gins to be operated on the first machine until job pi is completed
on machine r. C(pi,r) is proper evaluated through Eqs. (1)–(4), where
Eq. (1) refers to the conclusion time of the first job scheduled on the
first machine, and Eq. (2) refers to the conclusion time of the first job
scheduled on the remainder machines. Analogously, Eq. (3) evalu-
ates the completion time of job pi, 1 < i 6 n, on the first machine
(r = 1), whereas Eq. (4) evaluates the completion time of job pi,
1 < i 6 n, on the remainder machines, 1 < r 6m. Based on Eqs. (1)–
(4), the total flowtime value of a given permutation P (TFT(P)) is de-
fined as the sum of completion times on the last machine (Eq. (5)).

Cðp1;1Þ ¼ Tp1 ;1 ð1Þ
Cðp1; rÞ ¼ Cðp1; r � 1Þ þ Tp1 ;r 8r 2 f2; . . . ;mg ð2Þ
Cðpi;1Þ ¼ Cðpi�1;1Þ þ Tpi ;1 8i 2 f2; . . . ;ng ð3Þ
Cðpi; rÞ ¼ maxfCðpi; r � 1Þ;Cðpi�1; rÞg þ Tpi ;r 8i 2 f2; . . . ;ng

8r 2 f2; . . . ;mg ð4Þ

TFTðPÞ ¼
Xn

i¼1

Cðpi;mÞ ð5Þ

3. Discrete particle swarm optimization

This section describes the proposed discrete PSO to optimize the
total flowtime, and there are five subsections. The first subsection
shows the pseudo-code of the proposed PSO and discusses four
procedures to be defined. Each subsequent subsection explains in
details each procedure and their tuning parameters.

3.1. Pseudo-code

Algorithm 1 exhibits the pseudo-code of the proposed method.
The PSO procedure depends on other procedures, at first the pseu-
do-code of PSO is explained and the subsequent paragraphs detail
the procedures on which PSO depends on. The first line of the algo-
rithm initializes the set of particles (Particles), meaning that the po-
sition of each particle is set to an individual solution. The best
visited site of a given particle is also initialized with its current po-
sition. The main body of PSO lies on the loop from lines 2–20. Usu-
ally the main loop on PSO is repeated until the stop criterion is
satisfied, in this case the stop criterion was defined as a time limit
of 0.4 � n �m s, as the fastest heuristics for minimizing TFT in PFSP
context use the same stop criterion (e.g. Jarboui et al., 2009; Zhang
& Li, 2011; Xu et al., 2011; Costa et al., 2012). In line 4, probabilities
va, vb and vc are defined in the procedure ComputeProbabilities
standing for the probabilities of particle P choses the first, second
or third action, respectively. In line 5 a random number is picked
from the interval [0,1] and stored in variable Action. If the value
of Action is smaller or equal to va (line 6), then particle P explores
the search space in function ExploreAlone, otherwise P will move
towards a neighbor or towards the best site of a neighbor. In both
cases a destiny must be selected, this is done in lines 9–12. In line
9, the neighbor, of which either its current position or its best site
will be used as a guide, is selected randomly. The loop from line 10
to line 12 ensures that a neighbor is selected. If the value of Action
is greater than va and smaller or equal to vb then particle P will
move from its current position (PP,Curr) towards a site currently
occupied by a neighbor (PTarget,Curr). That move is made in proce-
dure MoveToNeighbor, line 14. If the value of Action is greater than
vb then P moves towards the best site a neighboring particle has
occupied, line 16. The main loop finishes when the time limit is
reached. In lines 21–26 the algorithm finds the best solution ever
achieved by a particle and returns it in BestSol, line 27.

Algorithm 1. Discrete PSO

1: Initialize the set of particles Particles
2: repeat
3: for each particle P with position PP,Curr and best visited

site PP,Best do
4: (va,vb,vc) ComputeProbabilities()
5: Action random number 2 [0,1]
6: if Action 6 va then
7: ExploreAlone(P)
8: else
9: Target random number 2 {1,2, . . . , jParticlesj}
10: while Target = P do
11: Target random number 2 {1,2, . . . , jParticlesj}
12: end while
13: if va < Action 6 vb then
14: MoveTowards(PP,PTarget,Curr)
15: else
16: MoveTowards(PP,PTarget,Best)
17: end if
18: end if
19: end for
20: until time limit of 0.4 � n �m s is reached
21: BestSol P1,Best

22: for P = 2 to jParticlesj
23: if TFT(PP,Best) < TFT(BestSol) then
24: BestSol PP,Best

25: end if
26: end for
27: return BestSol

W.E. Costa et al. / Expert Systems with Applications 39 (2012) 13118–13126 13119



Download English Version:

https://daneshyari.com/en/article/383288

Download Persian Version:

https://daneshyari.com/article/383288

Daneshyari.com

https://daneshyari.com/en/article/383288
https://daneshyari.com/article/383288
https://daneshyari.com

