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a b s t r a c t

This study presents application of the CMIF and the Hilbert Transform techniques onto simulated
response data obtained using a numerical model of a typical school building from Turkey. White noise
is added to the data in order to achieve a noise to signal ratio of 5%. 100 Monte Carlo analysis sequences
are carried out and the modal parameters (the frequencies, the mode shapes and the damping ratios) are
identified at each Monte Carlo run for both techniques. The results are compared with the identifications
obtained from the simulated data using stochastic subspace based system identification technique. The
overall results of the study show that the mode shapes are clearly identified the best by using the CMIF
technique. The damping ratios are estimated better by using the stochastic subspace based system iden-
tification technique whereas the frequencies are best determined by the CMIF. The results also show that
both the CMIF and the Hilbert Transform techniques are sensitive to the type of window used as well as
the averaging and the decimation process. It is apparent that the CMIF technique is as robust as the
frequently used stochastic subspace based system identification technique and can be confidently used
for modal parameter estimation of stiff low to mid rise reinforced concrete structures.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Output only modal identification has been very popular in the
last decade within the research circles due to its proven superiority
regarding the ease of application and lower expense compared to
the input output modal identification. The output only modal iden-
tification is more suited to large civil engineering structures which
are difficult to excite to appreciable amplitudes by artificial excita-
tion sources. Within this context, two alternative approaches are
present in the literature: namely, the time domain techniques
(Brincker, Zhang, & Andersen, 2000) and the frequency domain
techniques (Hermans & Van der Auweraer, 1999). The complex
mode indicator function, which is a singular value decomposition
enhancement of the classical peak picking technique has been used
extensively in the literature (Peeters, 2000). Recently, a further
enhancement to this technique has been recommended which
applies the Hilbert Transform on the amplitude spectra achieved
from the autocorrelation functions of the outputs at each sensor
degrees of freedom (Agneni et al., 2003; Agneni, Brincker, &
Capotelli, 2004). Agneni, Balis Crema, and Coppotelli (2010) pro-
poses a technique to evaluate the biased frequency response func-
tions. In this study, the technique proposed by Agneni et al. (2010)

is compared to the complex mode indicator function (CMIF) tech-
nique using 100 Monte Carlo simulations. Both techniques are ap-
plied on the numerically obtained output data from the assumed
sensor locations of a stiff reinforced concrete building. This build-
ing is a typical school building located in the North Western part of
Turkey and is currently instrumented with 17 sensors and a data
acquisition system with a high dynamic range within the context
of a TUBITAK project (Gundes Bakir, 2008). However, the experi-
mentally obtained data is not used in this study. This is because,
the aim of this study is to investigate the reliability bounds of
the CMIF and the Hilbert Transform Techniques. Therefore, it is
imperative to know beforehand the real modal parameters
(frequencies, mode shapes and the damping ratios) in order to
compare them with those obtained from the two frequency do-
main system identification techniques, namely, the CMIF and the
Hilbert Transform. The building is thus modeled with finite ele-
ment (FE) model and is subjected to white noise excitation. The
output data obtained this way is further modified by adding white
noise so that the noise to signal ratio is 5%. The modal parameter
estimates obtained from both techniques are compared to the real
modal parameters obtained from the FE model. The results show
that the CMIF technique gives better estimates for the mode shapes
and the eigenfrequencies as compared to the stochastic subspace
based system identification technique. It is also apparent that the
Hilbert Transform Technique does not substantially improve the
modal parameters obtained from the CMIF technique.
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2. Complex mode indicator function

Detailed overviews for the CMIF method are provided in Brinc-
ker et al. (2000), Allemang and Brown (2006), Shih, Tsuei,
Allemang, and Brown (1988a, 1988b) and Shih (1989). In this sec-
tion, the technique will be summarized for purposes of brevity. The
power spectral density of the response can be defined as:

GyyðjxÞ ¼ H�ðjxÞGuuðjxÞHðjxÞT ð1Þ

Here, Guu(jx) is the m �m power spectral density (PSD) matrix of
the input, m is the number of inputs, Gyy(x) is the ‘ � ‘ PSD matrix
of the responses, H(jx) is the ‘ �m frequency response function
and the (�)⁄ and (�)T denote the complex conjugate and the trans-
pose, respectively. If partial fraction expansion is applied on the
frequency response function, the following expression is obtained:

HðjxÞ ¼
Xn

k¼1

Rk

jx� kk
þ R�k

jx� k�k
ð2Þ

where n is the number of modes, kk is the pole and Rk is the residue
that can be expressed as:

Rk ¼ Uk!
T
k ð3Þ

where Uk = [/1k,/2k, . . . ,/Nk]T and !k ¼ ½c1k; c2k; . . . ; cNref k�
T are the

kth mode shape vector and the modal participation vector, respec-
tively. Nref is the number of inputs or references. H(jx) becomes a
square matrix and !k = Uk if all outputs are used as references. Pole
k, kk is defined as:

kk ¼ �rk þ ixdk ð4Þ

where rk is the damping factor; xdk is the damped modal fre-
quency. The modal frequency or the undamped natural frequency
can be expressed as:

xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

kþx
2
dk

q
ð5Þ

The damping ratio can be computed from:

nk ¼
rkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
kþx

2
dk

q ð6Þ

If these formulas are applied in output only modal analysis, the
input has to be assumed as white noise. In this case, the power
spectral matrix Gxx(jx) becomes a constant matrix C, then the
power spectral density matrix Gyy becomes:

GyyðjxÞ ¼
Xn

k¼1

Xn

s¼1

Rk

jx� kk
þ R�k

jx� k�k

� �
C

Rs

jx� ks
þ R�s

jx� k�s

� �H

ð7Þ

where (�)H shows the complex conjugate transpose or Hermitian
operation. The output power spectral density can be reorganized
in a pole/residue form after some mathematical manipulations
using the Heaviside partial fraction theorem as,

GyyðjxÞ ¼
Xn

k¼1

Ak

jx� kk
þ A�k

jx� k�k
þ AH

k

�jx� k�k
þ AT

k

�jx� kk
ð8Þ

where Ak is the corresponding residue matrix. The residue matrix is
an ‘ � ‘ Hermitian matrix which can be expressed as,

Ak ¼ RkC
Xn

s¼1

RH
s

�kk � k�s
þ RT

s

�kk � ks

 !
ð9Þ

If the structure is lightly damped (i.e., rk = xdk), the residue in the
vicinity of the kth modal frequency can be derived approximately
by using Eq. (3) as,

Ak �
RkCRH

k

2rk
¼ qkUkU

H
k ð10Þ

where the scalar qk can be expressed as,

qk ¼
cT

k Cc�k
2rk

ð11Þ

At a certain frequency x, only a limited number of modes will con-
tribute significantly (Brincker, Zhang, & Andersen, 2001). If this sub-
set of modes is denoted by Sub(x), the response spectral density
can be expressed as,

GyyðjxÞ ¼
X

k2SubðxÞ

qk/k/
T
k

jx� kk
þ q�k/

�
k/

T�

k

jx� k�k
: ð12Þ

The singular value decomposition (SVD) is the tool that is used to
compute the rank of a matrix where the number of nonzero singular
values equals the rank (Golub & Van Loan, 1996). The technique is
applied on the spectrum estimate Gyy 2 C‘�‘ which can be expressed
as the discrete time Fourier transform of the covariance sequence Rk

as,

GyyðejxDtÞ ¼
X1

k¼�1
Rkðe�jxkDtÞ ð13Þ

Reference sensors can be selected and used in the computation of
the spectrum estimate (Peeters, 2000). The reference outputs can
be selected from the full output matrix as,

yref
k ¼ Lyk; L ¼ ðIr0Þ ð14Þ

where yref
k 2 Rr are the reference outputs and L 2 Rr�‘ is the selec-

tion matrix that selects the reference sensors. In this case, the
reduced spectrum matrix Gref

yy 2 C‘�r can be obtained as,

Gref
yy ¼ GyyLT ð15Þ

The weighted averaged periodogram technique is used for estimat-
ing the spectra. First, the Discrete Fourier Transform (DFT) of the
weighted output signal is calculated as,

YðejxDtÞ ¼
XN�1

k¼0

wkyke�jxkDt ð16Þ

where wk represents the window function used. The spectrum is
then approximated by multiplying the DFT of the output by its com-
plex conjugate transpose and scaling this product by the squared
norm of the window as,

bGyyðejxDtÞ ¼ 1PN�1
k¼0 jwkj2

YðejxDtÞYTðe�jxDtÞ ð17Þ

Subsequently, the SVD of the spectrum matrix is obtained as,

GyyðsÞ ¼ UðsÞRðsÞUHðsÞ ð18Þ

where U and V are the orthogonal matrices formed by the N singular
vectors uN and vN, i.e., UHU = I and VHV = I and U(s) = [ui1,ui2, . . . ,uik]
is a complex unitary matrix that holds the singular vectors uij. The
matrix R(s) is composed of the singular values in descending order
in its diagonal and its plot versus the frequency gives the actual
CMIF diagram. The maxima in the CMIF plot gives the eigenfrequen-
cies. If only one mode is contributing at a certain frequency, there
will be only one term in Eq. (12). Then the first singular vector is
an estimate of the mode shape.

/̂ ¼ ui1 ð19Þ

The corresponding singular value is the autopower spectral density
function of the corresponding SDOF system as shown in Eq. (12).
From this piece of the single degree of freedom (SDOF) density func-
tion obtained around the peak of the Gyy, the natural frequency and
the damping can be identified using SDOF techniques as extensively
covered in the books of Maia et al. (1997), Allemang (1999), Ewins
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