
Enhanced decision making mechanism of rule-based genetic network
programming for creating stock trading signals

Shingo Mabu a,⇑, Kotaro Hirasawa b, Masanao Obayashi a, Takashi Kuremoto a

a Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611, Japan
b Information, Production and Systems Research Center, Waseda University, Hibikino 2-2, Kitakyushu, Fukuoka 808-0135, Japan

a r t i c l e i n f o

Keywords:
Evolutionary computation
Genetic network programming
Rule extraction
Stock trading
Technical analysis

a b s t r a c t

Evolutionary computation generally aims to create the optimal individual which represents optimal
action rules when it is applied to agent systems. Genetic Network Programming (GNP) has been proposed
as one of the graph-based evolutionary computations in order to create optimal individuals. GNP with
rule accumulation is an extended algorithm of GNP, which extracts a large number of rules throughout
the generations and stores them in rule pools, which is different from general evolutionary computations.
Concretely, the individuals of GNP with rule accumulation are regarded as evolving rule generators in the
training phase and the generated rules in the rule pools are actually used for decision making. In this
paper, GNP with rule accumulation is enhanced in terms of its rule extraction and classification abilities
for generating stock trading signals considering up and down trends and occurrence frequency of specific
buying/selling timing. A large number of buying and selling rules are extracted by the individuals evolved
in the training period. Then, a unique classification mechanism is used to appropriately determine
whether to buy or sell stocks based on the extracted rules. In the testing simulations, the stock trading
is carried out using the extracted rules and it is confirmed that the rule-based trading model shows
higher profits than the conventional individual-based trading model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A graph-based evolutionary algorithm called Genetic Network
Programming (GNP) (Mabu et al., 2007) has been proposed for cre-
ating action-rules in agent systems. GNP has been successfully ap-
plied to decision making problems (Hirasawa et al., 2008) due to its
distinguished representation abilities such as successive node tran-
sitions and reusability of nodes. Evolutionary Programming (EP)
(Fogel, 1994) also evolves graph structure (Finite State Machine),
but it must consider all the combinations of available inputs from
environments to determine the output and next state. Since GNP
uses only the necessary information by connecting nodes flexibly,
it can deal with Non-Markovian processes with compact program
structures.

Evolutionary computation generally evolves individuals in
order to increase their fitness, and it obtains the optimal or near
optimal individuals which represent action-rules when they are
used in agent control systems. Then, the evolved individuals are
actually used in the testing. GNP with rule accumulation (GNP-
RA) (Wang et al., 2009) also belongs to evolutionary computation
field; however, the concept of evolution is different from general

evolutionary computation. Although GNP-RA also evolves many
individuals by crossover and mutation until the last generation,
the important point is that the action rules (combinations of judg-
ments and actions) obtained by the individuals during the training
are stored in rule pools, that is, action rules are accumulated in the
rule pools every generation. Therefore, GNP-RA stores many rules
throughout the generations, while, in the original GNP, the best
individual in the last generation represents action rules. In other
words, GNP-RA can store many experiences obtained by the indi-
viduals in the training as rules.

Stock market analysis has been one of the most active research
fields, where many Machine Learning techniques are adopted. Re-
search on stock price prediction and trading models such as Neural
Network (Chang et al., 2009), Support Vector Machines (Huang
et al., 2005), rough set theory (Lee et al., 2010) and statistical anal-
ysis (Jensen et al., 2004) has been done. In recent years, evolution-
ary algorithms have been applied to many financial problems such
as portfolio optimization (Torrubiano and Suárez, 2010), bank-
ruptcy prediction (Cid et al., 2008), time-series prediction (Iba
and Sasaki, 1999). Expert system based approaches for stock trad-
ing have been also proposed recently (Dymova et al., 2010; Dym-
ova et al., 2012; Sevastianov and Dymova, 2009).

Generally speaking, methods for predicting stock prices and
determining the timing of buying and selling stocks are divided
into two groups; one is fundamental analysis which analyzes stock

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.05.037

⇑ Corresponding author. Tel./fax : +81 836 85 9519.
E-mail address: mabu@yamaguchi-u.ac.jp (S. Mabu).

Expert Systems with Applications 40 (2013) 6311–6320

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.05.037&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.05.037
mailto:mabu@yamaguchi-u.ac.jp
http://dx.doi.org/10.1016/j.eswa.2013.05.037
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


prices using the financial statement of each company, the eco-
nomic trend and so on; the other is technical analysis which
numerically analyzes the past movement of stock prices. Generally,
the research on stock price prediction and trading models using
soft computing belongs to technical analysis, so it determines the
timing of buying and selling stocks based on the technical indexes
such as rate of deviation, relative strength index, golden cross and
so on. This paper also deals with technical analysis.

Stock trading models based on GNP have been proposed as
applications (Chen et al., 2008; Mabu et al., 2007). GNP judges
the current situation/trend in the stock market based on the tech-
nical indexes, then determines the timing of buying and selling
stocks. In these models, the best individual in the last generation
is used in the testing simulations, so all the stock trading rules
are represented by one best individual. However, it is difficult for
one individual to adapt to various kinds of stock market situations
due to the following reasons. (1) GNP sequentially executes judg-
ment and processing nodes one by one according to the node tran-
sition, so all the experiences/rules obtained in the training period
cannot be directly used to decide the current action. (2) The num-
ber of action rules which one individual can contain is limited due
to the limited size of the program structure, while the large size of
the structure even causes much computational cost.

In this paper, GNP-RA for stock trading problems is developed,
which extracts and stores useful buying and selling rules in the
rule pools and the buying and selling actions are determined by
a unique matching calculation and decision making techniques.
Matching degrees introduced in this paper can tell us the timings
of buying/selling. In addition, reinforcement learning algorithm is
also used to extract rules. In Mabu et al. (2007), reinforcement
learning is applied to GNP in order to enhance the intensified
search and online learning abilities. This paper also uses reinforce-
ment learning in order to obtain good action sequences, however,
the more important point is to extract a large number of rules by
an exploration ability of reinforcement learning with e-greedy
policy.

This paper is organized as follows. In the next section, after the
basic structure of GNP is explained, how to represent action rules,
how to store the rules in the rule pools and how to decide actions
are explained. In Section 4, the stock trading problems treated in
this paper is described and the simulation results are analyzed.
Section 5 is devoted to conclusions.

2. Review of genetic network programming with reinforcement
learning

GNP was originally developed to create programs that work in
dynamic environments. In the original GNP, an individual is repre-
sented by a directed graph structure, evolved by crossover and
mutation, and the node transition rules are learned by reinforce-
ment learning. In this section, the phenotype and genotype repre-
sentations and the learning and evolution processes are reviewed.

2.1. Phenotype representation

2.1.1. Features of the directed graph structure
The phenotype representation of GNP is a directed graph struc-

ture shown in Fig. 1. It consists of a number of judgment nodes and
processing nodes and one start node. The number of nodes is deter-
mined in advance depending on the complexity of the problems.
Each judgment node has a if-then branch decision function and
each processing node has an action function. For example, the
judgment nodes in Fig. 1 examine technical indexes used in the
stock market analysis. Node 1 examines Relative Strength Index
(RSI) and selects a branch corresponding to the judgment result.

The processing nodes determine buying and selling actions. The
role of the start node is to determine the first node to be executed.
Therefore, the node transition starts from the start node, and judg-
ment and action sequence is realized by the connections between
nodes and judgment results.

The nodes in GNP can be repeatedly used due to the graph
structure, so complex programs can be created by compact struc-
tures, which contributes to the efficiency of the evolution (Mabu
et al., 2007). In addition, only the necessary nodes for solving the
target problem can be connected and used, so GNP does not need
the complete information of the environment unlike Finite State
Machines.

2.1.2. Subnodes in judgment and processing nodes
Extended GNP with reinforcement learning (GNP-RL) (Mabu

et al., 2007) has subnodes in each judgment and processing node
(Fig. 2). In the original GNP, one function is assigned to each node
and executed when the node is visited. On the other hand, in GNP-
RL, several functions (two functions in Fig. 2) are assigned as sub-
nodes and one of them is selected and executed by a reinforcement
learning algorithm. Therefore, reinforcement learning can select
better function/subnode for each node and the route of the node
transition can be optimized. Since this paper deals with a stock
trading problem, each subnode in a judgment node has a function
to examine a technical index and that in a processing node has a
function to buy or sell stocks.

2.2. Genotype representation

The graph structure is realized by the combination of gene
structures shown in Fig. 3. NTi shows the node type of node i.
NTi = 0 means start node, NTi = 1 means judgment node, and
NTi = 2 means processing node. di is a time delay which shows
the time spent on the execution of node i. In this paper, di of judg-
ment node is set at 1 and that of processing node is set at 5. The
time delay is useful to fix the maximum number of nodes to be
executed in each action step (in this paper, an action step is one
trading day). If five time units (time delays) are assigned to one ac-
tion step, the action step ends when the time units used by the
node transition become five or exceed five. That is, GNP can exe-
cute ‘‘at most five judgment nodes’’ or ‘‘less than five judgments
nodes and one processing node’’ in one step. The time delay is also
effective for avoiding the deadlock of the node transition due to the
judgment loop. Even if the judgment loop occurs and GNP cannot
execute any processing, each action step will ends with five time
units and finally GNP ends its trial without taking any actions,
which leads to the low fitness and such GNP will not be selected
for the next generation.

Qi1,Qi2, . . . are Q values (Sutton and Barto, 1998) assigned to
subnodes in node i. IDi1,IDi2, . . . are the node functions of the sub-
nodes. A Q value estimates the sum of the discounted rewards ob-
tained in the future. The contents of the functions are described in
the node function library. For example, NTi = 1 and IDi2 = 2 show
the function of subnode 2 in node i is J2. Judgment nodes examine
the technical indexes in the stock market, e.g., RSI, ROC and so on,
(The technical indexes used in this paper are described later in Ta-
ble 4). Each technical index is assigned to each judgment function
listed in the library. Processing nodes decide buying and selling ac-
tions, so P1 and P2 in Fig. 3 show buying and selling actions,
respectively.

CA
i1;C

B
i1; . . .and CA

i2;C
B
i2; . . .show the next node numbers connected

from node i. For example, subnode 1 in node i is connected to
CA

i1;C
B
i1; . . .. The superscripts A and B correspond to the judgment re-

sults, so if the judgment result is A at subnode 1, the next node be-
comes CA

i1.

6312 S. Mabu et al. / Expert Systems with Applications 40 (2013) 6311–6320



Download English Version:

https://daneshyari.com/en/article/383344

Download Persian Version:

https://daneshyari.com/article/383344

Daneshyari.com

https://daneshyari.com/en/article/383344
https://daneshyari.com/article/383344
https://daneshyari.com

