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a b s t r a c t

In this paper we describe a branch-and-cut algorithm for the vehicle routing problem with unloading con-

straints. The problem is to determine a set of routes with minimum total cost, each route leaving a depot,

such that all clients are visited exactly once. Each client has a demand, given by a set of items, that are ini-

tially stored in a depot. We consider the versions of the problem with two and tri dimensional parallelepiped

items. For each route in a solution, we also need to construct a feasible packing for all the items of the clients

in this route. As it would be too expensive to rearrange the vehicle cargo when removing the items of a client,

it is important to perform this task without moving the other client items. Such packings are said to satisfy

unloading constraints.

In this paper we describe a branch-and-cut algorithm that uses several techniques to prune the branch-and-

cut enumeration tree. The presented algorithm uses several packing routines with different algorithmic ap-

proaches, such as branch-and-bound, constraint programming and metaheuristics. The careful combination

of these routines showed that the presented algorithm is competitive, and could obtain optimum solutions

within significantly smaller computational times for most of the instances presented in the literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Several problems in transportation systems involve route plan-

ning for vehicles with containers attached and accommodation of

cargo into these containers. The route planning problem and the

packing problem are well known problems in the research literature,

and they were largely explored separately. However, in recent years

there has been some interest in considering both problems combined,

leading to better global solutions.

In the Vehicle Routing Problem with D-Dimensional Unloading

Constraints (DL-CVRP), clients have a demand for goods stored into

a depot, represented by D-dimensional parallelepipeds, and k vehi-

cles must be used to deliver these goods. Each travel from the depot

to a client, or from a client to a next one has a cost. The problem is to

find k routes leaving the depot, one route for each vehicle, such that

all clients are visited exactly once, and such that the items of clients

of a route can be packed in the vehicle’s container. The objective func-

tion of the problem is to minimize the total cost of the routes. As it

would be too expensive to rearrange the cargo at each visit, we add a

condition that the goods to be unloaded in a client must be removed
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without moving the remaining goods, these are the so called unload-

ing constraints. We consider two versions of the problem, one with

two dimensional items and another with three-dimensional ones.

The literature in vehicle routing problem is extensive, with dif-

ferent variants including practical constraints. In the last decade,

there has been some interest in variants that include two- and three-

dimensional packing constraints. Iori, Salazar-González, and Vigo

(2007) were the first to present an exact branch-and-cut approach

for the capacitated vehicle routing problem with two-dimensional

unloading constraints (2L-CVRP). To separate infeasible routes, these

authors used known separations routines for the CVRP. To separate

routes that lead to infeasible packings, they used an adaptation of the

exact algorithm, presented in Martello, Pisinger, and Vigo (2000), to

satisfy unloading constraints. Following this work, Azevedo, Hokama,

Miyazawa, and Xavier (2009) also presented an exact method for 2L-

CVRP, using a different set of separation routines for the CVRP, made

available by Lysgaard, Lechtford, and Eglese (2003). To cut routes

that lead to infeasible packings, these authors also used an adap-

tation of the algorithm presented by Martello et al. (2000). Due to

the difficulty of solving this problem exactly, several heuristics were

also proposed. Gendreau, Iori, Laporte, and Martello (2008) presented

a tabu search method to the 2L-CVRP. Fuellerer, Doernera, Hartla,

and Iori (2009) employed an ant colony method. Zachariadis, Taran-

tilis, and Kiranoudis (2009) introduced a guided tabu search method.
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Duhamel, Lacomme, Quilliot, and Toussaint (2011) presented a GRASP

approach for the case without unloading constraints. Silveira and

Xavier (2014) considered the pick-up and delivery version of the

problem. In this case both loading and unloading constraints must

be taken into account when generating a route. They presented

an exact algorithm and also a GRASP heuristic for the problem.

Approximation algorithms for the associated packing problem

that considers unloading constraints were proposed by Silveira,

Miyazawa, and Xavier (2013a, 2014); Silveira, Xavier, and Miyazawa

(2013b).

The heterogeneous fleet variant with unloading constraint , where

vehicles containers have different sizes, was considered by Wei,

Zhang, and Lim (2014), who present an adaptive variable neigh-

bourhood search metaheuristic for the three dimensional case.

Dominguez, Juan, Barrios, Faulin, and Agustin (2014) presented a ran-

domised multi-start biased metaheuristic for the two dimensional

case.

The capacitated vehicle routing problem with three-dimensional

unloading constraints (3L-CVRP) was first considered by Gendreau,

Iori, Laporte, and Martello (2006). They presented a tabu search

method to solve the problem. Junqueira, Oliveira, Carravilla, and

Morabito (2013) presented an exact model for the 3L-CVRP via an in-

teger linear programming model with practical constraints, namely

stability, multidrop and load-bearing strength. The formulation was

able to solve instances of moderate size. The constraints considered

differ from the ones here. For more references on routing and loading

problems we refer to a survey by Iori and Martello (2013).

In the 2L-CVRP and 3L-CVRP problems we face a packing sub-

problem of determining if a set of items of one route can be packed

in a bin. This is the so called Orthogonal Packing Problem (OPP). In

this problem it is given a set of items and a bin with bounded di-

mensions, and the objective is to find a placement of these items

in the bin, or prove that it is unfeasible. When the items and the

bins are two-dimensional objects (resp., three-dimensional), we have

the two-dimensional orthogonal packing problem - 2OPP (resp. the

three-dimensional orthogonal packing problem - 3OPP). Clautiaux,

Jouglet, Carlier, and Moukrim (2008) presented an efficient method

for solving the 2OPP using Constraint Programming. Their work was

further extended to include new bounds by Mesyagutov, Scheithauer,

and Belov (2012a), and to consider the three-dimensional case by

Mesyagutov, Scheithauer, and Belov (2012b). Recently the problem

was considered with the unloading constraint by Côté, Gendreau, and

Potvin (2014), who presented an exact algorithm using branch-and-

cut and a set of lower bounds.

The Constraint Programming (CP) paradigm has been proved to be

a very efficient method for solving many different problems (Rossi,

Beek, & Walsh, 2006). This paradigm was well known by other areas

but just in the last decades was rediscovered by researchers in the

combinatorial optimization community. The Integer Linear Program-

ming (ILP) is probably the most used method for solving combinato-

rial optimization problems (Wolsey, 1998). The use of both, CP and

ILP together is a hot topic and has obtained good results for many

problems (Hooker, 2011).

In this paper we propose an exact branch-and-cut algorithm to

solve the 2L-CVRP and the 3L-CVRP, following the branch-and-cut ap-

proach presented in Azevedo et al. (2009); Iori et al. (2007), using

more elaborate cutting plane routines to cut not only routes whose

items cannot be packed in one bin, using CVRP routines (Lysgaard

et al., 2003), but also fast routines that check the feasibility of pack-

ings for sub-routes. These cuts are obtained using algorithms to solve

the OPP. To this purpose, we tested a number of original and adapted

algorithms, and also sophisticated lower bounds that can prove that

a set of items cannot be packed in a bin. Besides the adaptation

of the exact packing algorithm in Martello et al. (2000), we also

adapted and improved the constraint programming algorithm pre-

sented by Clautiaux et al. (2008). We also present new heuristics, one

is based on the Bottom-Left heuristic, and another one is a BRKGA

metaheuristic.

The declarative approach of the constraint programming tech-

nique allowed us to obtain a packing algorithm for which practical

constraints are easily to be incorporated, as opposed to the branch

and bound approach used in Iori et al. (2007), such as balancing con-

straints and weight distribution (Bischoff & Ratcliff, 1995), grouping

items (Bischoff & Ratcliff, 1995) and more specific application con-

straints. The efficiency of the proposed algorithms are evaluated by

an experimental analysis with instances from the literature, compar-

ing them with other algorithms from the literature. The careful appli-

cation of separation routines, not only made possible to obtain solu-

tions for larger instances, but also to deal with the three-dimensional

problem version, which previous experimental results showed diffi-

culty to solve.

The proposed use of constraint programming with integer lin-

ear programming models, can be applied to other practical variants,

as the multi-depot (Li, Pardalos, Sun, Pei, & Zhang, 2015) and cross-

docking (Morais, Mateus, & Noronha, 2014) vehicle routing problems,

among others.

2. Orthogonal packing problem with unloading constraints

In this section we formally describe the Orthogonal Packing Prob-

lem with Unloading Constraint (OPPUL). We present exact algo-

rithms, some heuristics, and lower bounds for the two and three-

dimensional version of this problem.

2.1. Problem description

The orthogonal packing problem with unloading constraint can

be defined as follows: It is given a D-dimensional container B of di-

mensions (W 1, . . . ,W D) with total volume V(B) = ∏D
d=1 W d, where

W d ∈ Z+, 1 ≤ d ≤ D; n sets of D-dimensional items (I1, . . . , In), let

I = ⋃n
v=1 Iv. Each item i ∈ Iv has dimensions (w1

i
, . . . , wD

i
), where wd

i
∈

Z+. The volume of an item iis denoted by V(i) = ∏D
d=1 wd

i
and the vol-

ume of a set of items I is denoted by V(I) = ∑
i∈I V(i). The problem is

to find a packingPI of the items I in the bin B that respects the unload-

ing constraints in the direction of the last dimension D.

More precisely, a packing PI of items I in a container B =
(W 1, . . . ,W D) that satisfy unloading constraints is a function PI : I →
[0,W 1) × . . . × [0,W D) such that:

(i) The packing must be orthogonal, i.e. the edges of the items

must be parallel to the respective container’s edges.

(ii) The packing must be oriented, i. e., the items must be packed

in the original orientation given in I.

(iii) Items of I must be packed within the container’s boundaries.

That is, if the position where the item is packed is given by

PI(i) = (x1
i
, . . . , xD

i
), for each i ∈ I, then

0 � xd
i � xd

i + wd
i � W d , for 1 � d � D. (1)

(iv) Items must not overlap. That is, if the region occupied by

the item i is given by R(i) = [x1
i
, x1

i
+ w1

i
) × · · · × [xD

i
, xD

i
+ wD

i
)

then

R(i) ∩ R( j) = ∅, for all pairs i �= j ∈ I. (2)

(v) Items belonging to a set Iv are not blocked by any item belong-

ing to a set Iu if u > v. That is, if item imust be unloaded before

item j, j cannot be packed in the region between i and the end

of the container, in the unloading dimension D. More precisely

consider the region that includes the item i and its way to the

exit of the container defined by A packing PI of I = I1 ∪ . . . ∪ In
in the bin B respects the unloading constraints if it satisfy
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