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a b s t r a c t

Due to the novelty of the Grey Wolf Optimizer (GWO), there is no study in the literature to design a multi-

objective version of this algorithm. This paper proposes a Multi-Objective Grey Wolf Optimizer (MOGWO)

in order to optimize problems with multiple objectives for the first time. A fixed-sized external archive is

integrated to the GWO for saving and retrieving the Pareto optimal solutions. This archive is then employed

to define the social hierarchy and simulate the hunting behavior of grey wolves in multi-objective search

spaces. The proposed method is tested on 10 multi-objective benchmark problems and compared with two

well-known meta-heuristics: Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

and Multi-Objective Particle Swarm Optimization (MOPSO). The qualitative and quantitative results show

that the proposed algorithm is able to provide very competitive results and outperforms other algorithms.

Note that the source codes of MOGWO are publicly available at http://www.alimirjalili.com/GWO.html.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There are different challenges in solving real engineering prob-

lems, which needs specific tools to handle them. One of the most

important characteristics of real problems, which make them chal-

lenging, is multi-objectivity. A problem is called multi-objective if

there is more than one objective to be optimized. Needless to say,

a multiple objective optimizer should be employed in order to solve

such problems. There are two approaches for handling multiple ob-

jectives: a priori versus a posteriori (Branke, Kaußler, & Schmeck,

2001; Marler & Arora, 2004).

The former class of optimizers combines the objectives of a

multi-objective problem to a single-objective with a set of weights

(provided by decision makers) that defines the importance of each

objective and employs a single-objective optimizer to solve it. The

unary-objective nature of the combined search spaces allows find-

ing a single solution as the optimum. In contrary, a posterior method

maintain the multi-objective formulation of multi-objective prob-
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lems, allowing to explore the behavior of the problems across a range

of design parameters and operating conditions compared to a priori

approach (Deb, 2012). In this case, decision makers will eventually

choose one of the obtained solutions based on their needs. There is

also another type of handling multiple objectives called progressive

method, in which decision makers’ preferences about the objectives

are considered during optimization (Branke & Deb, 2005).

In contrary to single-objective optimization, there is no single

solution when considering multiple objectives as the goal of the

optimization process. In this case, a set of solutions, which repre-

sents various trade-offs between the objectives, includes optimal so-

lutions of a multi-objective problem (Coello, Lamont, & Van Veld-

huisen, 2007). Before 1984, mathematical multi-objective optimiza-

tion techniques were popular among researchers in different fields

of study such as applied mathematics, operation research, and com-

puter science. Since the majority of the conventional approaches (in-

cluding deterministic methods) suffered from stagnation in local op-

tima, however, such techniques were not applicable as there are not

nowadays.

In 1984, a revolutionary idea was proposed by David Schaf-

fer (Coello Coello, 2006). He introduced the concepts of multi-

objective optimization using stochastic optimization techniques (in-

cluding evolutionary and heuristic). Since then, surprisingly, a signif-

icant number of researches have been dedicated for developing and
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evaluating multi-objective evolutionary/heuristic algorithms. The ad-

vantages of stochastic optimization techniques such as gradient-free

mechanism and local optima avoidance made them readily applica-

ble to the real problems as well. Nowadays, the application of multi-

objective optimization techniques can be found in different fields

of studies: mechanical engineering (Kipouros et al., 2008), civil en-

gineering (Luh & Chueh, 2004), chemistry (Gaspar-Cunha & Covas,

2004; Rangaiah, 2008), and other fields (Coello & Lamont, 2004).

Early year of multi-objective stochastic optimization saw conver-

sion of different single-objective optimization techniques to multi-

objective algorithms. Some of the most well-known stochastic opti-

mization techniques proposed so far are as follows:

• Strength–Pareto Evolutionary Algorithm (SPEA) (Zitzler, 1999; Zit-

zler & Thiele, 1999).
• Non-dominated Sorting Genetic Algorithm (Srinivas & Deb, 1994)
• Non-dominated Sorting Genetic Algorithm version 2 (NSGA-II)

(Deb, Pratap, Agarwal, & Meyarivan, 2002)
• Multi-Objective Particle Swarm Optimization (MOPSO) (Coello,

Pulido, & Lechuga, 2004)
• Multi-Objective Evolutionary Algorithm based on Decomposition

(MOEA/D) (Zhang & Li, 2007)
• Pareto Archived Evolution Strategy (PAES) (Knowles & Corne,

2000)
• Pareto–frontier Differential Evolution (PDE) (Abbass, Sarker, &

Newton, 2001).

The literature shows that these algorithms are able to effectively

approximate the true Pareto optimal solutions of multi-objective

problems. However, there is a theorem here called No Free Lunch

(NFL) (Wolpert & Macready, 1997) that has been logically proved that

there is no optimization technique for solving all optimization prob-

lems. According to this theorem, the superior performance of an op-

timizer on a class of problems cannot guarantee the similar perfor-

mance on another class of problems. This theorem is the foundation

of many works in the literature and allows researchers in this field

to adapt the current techniques for new classes of problems or pro-

pose new optimization algorithms. This is the foundation and mo-

tivation of this work as well, in which we propose a novel multi-

objective optimization algorithm called Multi-Objective Grey Wolf

Optimizer (MOGWO) based on the recently proposed Grey Wolf Op-

timizer (GWO). The contributions of this research are as follows:

• An archive has been integrated to the GWO algorithm to maintain

non-dominated solutions.
• A grid mechanism has been integrated to GWO in order to im-

prove the non-dominated solutions in the archive.
• A leader selection mechanism has been proposed based on alpha,

beta, and delta wolves to update and replace the solutions in the

archive.
• The multi-objective version of GWO has been proposed utilizing

the above three operators.

The rest of the paper is organized as follows. Section 2 presents

definitions and preliminaries of optimization in a multi-objective

search space. Section 3 briefly reviews the concepts of GWO and then

proposes the MOGWO algorithm. The qualitative and qualitative re-

sults as well as relevant discussion are presented in Section 4. Even-

tually, Section 5 concludes the work and outlines some advises for

future works.

2. Literature review

This section provides the concepts of multi-objective optimization

and current techniques in the field of meta-heuristics.

2.1. Multi-objective optimization

As briefly mentioned in the introduction, multi-objective op-

timization refers to the optimisation of a problem with more than

one objective function. Without loss of generality, it can be formu-

lated as a maximization problem as follows:

Maximize : F (�x) = f1(�x), f2(�x), . . . , fo(�x) (2.1)

Sub ject to : gi(�x) ≥ 0, i = 1, 2, . . . , m (2.2)

hi(�x) = 0, i = 1, 2, . . . , p (2.3)

Li ≤ xi ≤ Ui, i = 1, 2, . . . , n (2.4)

where n is the number of variables, o is the number of objective

functions, m is the number of inequality constraints, p is the num-

ber of equality constraints, gi is the ith inequality constraints, hi indi-

cates the ith equality constraints, and [Li,Ui] are the boundaries of ith

variable.

In single-objective optimization, solutions can be compared easily

due to the unary objective function. For maximization problems, so-

lution X is better than Y if and only if X > Y. However, the solutions in

a multi-objective space cannot be compared by the relational oper-

ators due to multi-criterion comparison metrics. In this case, a solu-

tion is better than (dominates) another solution if and only if it shows

better or equal objective value on all of the objectives and provides a

better value in at least one of the objective functions. The concepts of

comparison of two solutions in multi-objective problems were first

proposed by Francis Ysidro (Edgeworth, 1881) and then extended by

Vilfredo Pareto (Pareto, 1964). Without loss of generality, the math-

ematical definition of Pareto dominance for a maximization problem

is as follows (Coello, 2009):

Definition 1. Pareto Dominance:

Suppose that there are two vectors such as: �x = (x1, x2, . . . , xk)

and �y = (y1, y2, . . . , yk).

Vector x dominates vector y (denote as x �y) iff :

∀i ∈ {1, 2, . . . , k}, [ f (xi) ≥ f (yi)] ∧ [∃i ∈ 1, 2, . . . , k : f (xi)] (2.5)

The definition of Pareto optimality is as follows (Ngatchou, Zarei,

& El-Sharkawi, 2005):

Definition 2. Pareto Optimality:

A solution �x ∈ X is called Pareto-optimal iff:

� �y ∈ X | F (�y) � F (�x) (2.6)

A set including all the non-dominated solutions of a problem is

called Pareto optimal set and it is defined as follows:

Definition 3. Pareto optimal set:

The set all Pareto-optimal solutions is called Pareto set as follows:

Ps := {x, y ∈ X | ∃F (y) � F (x)} (2.7)

A set containing the corresponding objective values of Pareto opti-

mal solutions in Pareto optimal set is called Pareto optimal front. The

definition of the Pareto optimal front is as follows:

Definition 4. Pareto optimal front: a set containing the value of ob-

jective functions for Pareto solutions set:

Pf := {F (x)|x ∈ Ps} (2.8)
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