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a b s t r a c t 

This study proposes a new approach for solving the problem of autonomous movement of robots in en- 

vironments that contain both static and dynamic obstacles. The purpose of this research is to provide 

mobile robots a collision-free trajectory within an uncertain workspace which contains both stationary 

and moving entities. The developed solution uses Q-learning and a neural network planner to solve path 

planning problems. The algorithm presented proves to be effective in navigation scenarios where global 

information is available. The speed of the robot can be set prior to the computation of the trajectory, 

which provides a great advantage in time-constrained applications. The solution is deployed in both Vir- 

tual Reality (VR) for easier visualization and safer testing activities, and on a real mobile robot for exper- 

imental validation. The algorithm is compared with Powerbot’s ARNL proprietary navigation algorithm. 

Results show that the proposed solution has a good conversion rate computed at a satisfying speed. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Path planning is one of the key elements of autonomous mo- 

bile robots. Since the introduction of mobile robotic platforms back 

in the ‘50s, the main desiderate sought by most researchers in 

motion planning is the development an algorithm capable of pro- 

viding collision-free trajectories. The subject was divided into two 

separate research areas, based on the type of environment infor- 

mation which is used by the mobile robot ( de Berg, van Kreveld, 

Overmars, & Schwarzkopf, 20 0 0 ). 

The first approach uses global knowledge of the environment, 

meaning that at each moment, the robot has complete informa- 

tion about its location, movement capabilities, obstacles and tar- 

get. This raises additional problems related to localization. Based 

on a good localization technique, the robot can determine precisely 

its position with respect to the changing environment (usually, a 

configuration space C is employed to describe all possible config- 

urations of robot; presuming the navigation takes place in a 2D 

workspace, C is divided in 2: the obstacles space – C obs , and the 

free space – C free ). Navigating in C free can be achieved through a 

wide variety of algorithms (such as SLAM – Simultaneous Local- 

ization And Mapping ( Leonard & Durrant-Whyte, 1991 ), Wireless 
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Localization based on RSSI ( Stoep, 2009 ), particle filter localization 

( Dellaert, Fox, Burgard, & Thrun, 1999 ) and others) and sensorial 

systems (GPS ( Montiel & Sepúlveda, 2014 ), camera networks, en- 

vironment markers and so on). As one can infer, it is possible to 

know in advance if the goal is reachable, which makes this a per- 

fect candidate for artificial neural networks (ANNs). 

The second approach uses local information retrieved by range 

sensors (sonar ( Kim & Kim, 2011 ), laser ( Surmann, Nüchter, & 

Hertzberg, 2003 )), infrared sensors ( Alwan, Wagner, Wasson, & 

Sheth, 2005 ) or video cameras ( Seder & Petrovic, 2007 ). Aside from 

the fact that there is no guarantee of convergence, one of the main 

issues which needs to be solved by scientists is the identifica- 

tion and avoidance of local minima. In most cases, this approach 

doesn’t guarantee convergence. Thus, we settle to use global infor- 

mation within this study. 

Over the last decades, many researches dealt with the path 

planning problem. Various types of solutions were proposed: grid- 

based, potential fields, geometrical or based on artificial intelli- 

gence (AI). Grid-based methods involve the overlay of a grid over 

the C space. In order to obtain a valid path, all grid cells (or 

grid points) must therefore be included in C free . One of the most 

common grid-based algorithms in motion planning is VFH (with 

its variants, VFH + and VFH 

∗) ( Borenstein & Koren, 1991; Ulrich & 

Borenstein, 1998 ). Potential fields model C after a potential func- 

tion: obstacles are seen as repulsive entities while the target is 

seen as an attractive center. The workspace is regarded as an 
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isolated universe, which works towards minimizing its potential 

energy, thus pushing the moving entity (the mobile robot) to 

the goal ( Borenstein & Koren, 1991 ). Among geometrical meth- 

ods, the most used are cell decomposition and the visibility graph 

( Barraquand & Latombe, 1991 ). The visibility graph is constructed 

based on clusters of inter-visible points within C free . Using a 

traversing algorithm such as Dijkstra, A 

∗ ( Dechter & Pearl, 1985 ) 

or D 

∗ ( Stentz, 1994 ), the shortest or optimal paths are computed 

( Lozano-Pérez & Wesley, 1979 ). Latest research in motion plan- 

ning employs the use of artificial learning techniques. Q-learning 

has been used in Jaradat, Al-Rousan, and Quadan (2011 ) to achieve 

motion planning in dynamic environments. The authors limit the 

number of states from the states space, thus reducing the size 

of Q-table and indirectly, the computation time; however, conver- 

gence is not guaranteed. Inspired by bird flocking, particle swarm 

optimization (PSO) is also widely used in motion planning ( Qin, 

2004 ). Each particle from the space of solution candidates tries to 

achieve the goal optimally, and improves its “experience” after ev- 

ery new iteration, based on its trajectory history and on the “ex- 

perience” of other neighboring particles. Another widely exploited 

motion planning method is fuzzy logic ( Reignier, 1994 ). Last but 

not least, neural networks were used to achieve obstacle-free tra- 

jectories ( Dezfoulian, Wu, & Ahmad, 2013; Fierro & Lewis, 1998 ). 

Although many of these AI methods show promising results, just a 

few actually target the avoidance of dynamic obstacles, and even 

less fewer implement the proposed motion planning solution in 

real testing environments for experimental validation. 

A multi-layer neural network is able to map non-linear func- 

tions ( Hecht-Nielsen, 1987 ). This feature can be used in conjunc- 

tion with reinforcement learning in order to solve the path plan- 

ning problem, given prior knowledge of the environment. For this 

specific case, Q-learning ( Russell & Norvig, 2002 ) was used with 

the following function that quantifies the quality of a state-action: 

Q : S × A → R (1) 

where Q is the set of solutions, S is the set of states and A is the 

set of actions. The cost, or better said, the reward for a collision- 

free trajectory is given if the mobile robot reaches the goal. In 

other words, the proposed solution samples each state, action and 

result from the workspace as an underlying probability distribu- 

tion which helps in calculating the reward parameter. For fast con- 

vergence, the solution makes further use of a feed-forward neural 

network. Thus the proposed, solution usually find a collision-free 

trajectory from the first few epochs. 

The motion planner is implemented in VR for initial testing and 

efficient visualization, and after achieving satisfying results, on a 

real mobile robot: PowerBot from Mobile Robots ( “PowerBot web- 

site”, 2015 ). 

2. Literature overview 

This study encompasses aspects from multiple research areas. 

A brief resume of current achievements in these areas is proposed 

bellow. 

2.1. Obstacle avoidance of mobile robots in dynamic environments 

Avoiding collisions with moving obstacles is a challenging task. 

In order to solve this problem, a large number of algorithms using 

both local and global knowledge were proposed by researchers. 

Knowing only local information about the working environment 

presumes, in most cases, the usage of a reactive approach, such as 

directional or velocity-based methods. Directional methods calcu- 

late geometrically the robot’s trajectory ( Khatib, 1986; Minguez & 

Montano, 2004 ). Knowing the exact coordinates of the robot and of 

the obstacles, the path planner can simply calculate the Euclidian 

distance at each time instance, and by setting a lower limit to this 

variable, the robot can move on collision-free trajectories ( Asano, 

Guibas, Hershberger, & Imai, 1985 ). Velocity-based methods con- 

sider the kinetic energy of the robot and of the closest recognized 

moving obstacles, and use this data in trajectory generation ( Large, 

Laugier, & Shiller, 2005 ). The most used velocity-based method is 

Dynamic Time Window, introduced back in 1997 ( Fox, Burgard, & 

Thrun, 1997 ). One of the biggest issues with reactive methods is 

that they need a good sensorial system which can produce accu- 

rate position coordinates for any local obstacles. Latest studies use 

video cameras to get environment information and to estimate the 

dynamics of the scene. For example, a single camera can be used 

to either detect landmarks and environment cues, or based on an 

algorithm such as the Block-Based Motion Estimation ( Kim & Do, 

2012 ), to detect and classify moving obstacles. Multiple cameras 

provide stereoscopic vision, making depth perception much easier 

( Chilian & Hirschmüller, 2009 ). Another type of sensor introduced 

on the market in the last decade is the time-of-flight (TOF) camera 

( May & Werner, 2006 ), a hybrid between laser range sensors and 

classic video cameras. 

Usually, obstacle avoidance algorithms based on local informa- 

tion of an environment with a fairly large amount of obstacles rely 

on selecting the obstacle which is most likely to collide with the 

robot. This strategy is however hard to implement on real mobile 

robots, since the selection process itself is subject to many ques- 

tions such as: 

1. Are all the obstacles properly sensed? 

2. Is this the closest obstacle? 

3. Is this the most dangerous obstacle? 

4. What if there are 2 or multiple obstacles closing at the same 

time? 

Considering a global representation of the dynamic environ- 

ment is available, some of the most used navigation algorithms 

rely on variations of the potential field method. Cases include spe- 

cific situations when for example both the target and the robot are 

moving ( Ge & Cui, 2002; Huang, 2009 ), or the use of harmonic 

functions in order to completely eliminate the local minima ( Kim 

& Khosla, 1992 ). Others use an integrated representation of the 

workspace ( Savkin & Wang, 2014 ) or analytical approaches ( Qu, 

Wang, & Plaisted, 2004 ) to achieve collision-free trajectories. 

One of the main issues that drifted researches away towards 

unconventional motion planning algorithms is the computation 

time. Lately, several studies employ the use of AI, since many 

methods converge faster, are easier to implement and produce in 

some cases more satisfying results. 

2.2. Path planning with artificial intelligence techniques 

There are many artificial intelligence techniques used for solv- 

ing path planning. Among these, fuzzy logic was the first to be 

used ( Reignier, 1994; Saffiotti, 1997; Yen, 1995 ). Fuzzy logic is great 

for static workspaces, but produces weak results in dynamic envi- 

ronments. Also, fuzzy-computed trajectories are not optimal. Ge- 

netic algorithms (GAs) followed shortly ( Sugihara & Smith, 1997 ). 

Due to their specific, GAs are great at finding global optimal trajec- 

tories. However, they do not scale well with highly complex envi- 

ronments, and finding a good fitness function for the motion plan- 

ning problem is rather difficult. Hybrid methods emerged, which 

used classic algorithms such the potential fields, together with AI 

techniques (such as GAs), for improving the solution ( Vadakkepat, 

20 0 0 ). However, the path planning performance is still weak due 

to the limitations imposed by the potential field model used in the 

study. PSO also started to be used for achieving collision-free robot 

navigation ( Kennedy, 2010; Nasrollahy, 2009 ). However, the results 
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