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a b s t r a c t

This paper revisits the classical Polynomial Mutation (PLM) operator and proposes a new probe guided
version of the PLM operator designed to be used in conjunction with Multiobjective Evolutionary
Algorithms (MOEAs). The proposed Probe Guided Mutation (PGM) operator is validated by using data sets
from six different stock markets. The performance of the proposed PGM operator is assessed in
comparison with the one of the classical PLM with the assistance of the Non-dominated Sorting Genetic
Algorithm II (NSGAII) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). The evaluation of the
performance is based on three performance metrics, namely Hypervolume, Spread and Epsilon indicator.
The experimental results reveal that the proposed PGM operator outperforms with confidence the
performance of the classical PLM operator for all performance metrics when applied to the solution of
the cardinality constrained portfolio optimization problem (CCPOP). We also calculate the True Efficient
Frontier (TEF) of the CCPOP by formulating the CCPOP as a Mixed Integer Quadratic Program (MIQP) and
we compare the relevant results with the approximate efficient frontiers that are generated by the
proposed PGM operator. The results confirm that the PGM operator generates near optimal solutions that
lie very close or in certain cases overlap with the TEF.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) have been increasingly applied
over the past years for the solution of optimization problems with
multiple objectives. The typical Multiobjective Evolutionary
Algorithm (MOEA) utilizes three basic operators: selection,
crossover and mutation (Metaxiotis & Liagkouras, 2012). However,
the available literature regarding the variation operators for evolu-
tionary multiobjective optimization remains relatively small. In
particular, the mutation operator has received little attention and
the majority of MOEAs make use of the Polynomial Mutation
(PLM) operator proposed by Deb and Goyal (1996). Later, Deb
and Tiwari (2008) proposed a highly disruptive version of the Poly-
nomial Mutation that has been utilized in the latest version of
NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002) and SPEA2
(Zitzler, Laumanns, & Thiele, 2001). This paper proposes a new
version of the highly disruptive Polynomial Mutation (PLM) named
Probe Guided Mutation (PGM) operator that produces better
results. More recently, Da Ronco and Benini (2013) presented a
Shrink-Mutation operator for MOEAs that belongs to the Gaussian

mutations category. However, as the authors admit the PLM
operator when applied to IBEA algorithm gives better results than
the Shrink-Mutation operator in terms of convergence towards the
True Pareto Front (Da Ronco & Benini, 2013). Das, Mallipeddi, and
Maity (2013) presented a p-best mutation strategy for Evolution-
ary Programming (EP). EP relies mainly on its mutation operator
for function optimization. Shortly the p-best mutation operator
entails that any one of the p top-ranked population members
according to fitness value is selected randomly for mutation.
Tang and Tseng (2013) presented a new mutation operator called
ADM for real coded Genetic Algorithms (GAs). According to the
authors, the ADM mutation operator enhances the abilities of
GAs in searching global optima as well as in speeding convergence
by integrating a local directional search and adaptive random
search strategies.

The majority of the most recent mutation operators have been
developed for differential evolution (DE) algorithms. Thus, Zhou,
Li, and Gao (2013) proposed a new mutation operator called inter-
sect mutation differential evolution (IMDE) algorithm. Alguliev,
Aliguliyev, and Isazade (2012) proposed a new DE algorithm based
on self-adaptive mutation and crossover (DESAMC). The proposed
method dynamically adapts scale factor and crossover rate. Gong,
Cai, and Liang (2014) present a ranking-based mutation operator
that makes the DE algorithm to converge faster.
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Although the considerable amount of the ongoing work related to
mutation operators and their importance for the performance of the
entire algorithm, we noticed that the study of mutation operators in
the context of MOEAs remains relatively rare. The PLM operator
remains undoubtedly the mutation operator of choice when it comes
to MOEAs. The motivation of this study is to build on the existing
PLM and present a mechanism (the PGM) that allows the better
exploration of solution space and is able to generate near optimal
solutions that lie very close to the True Efficient Frontier (TEF).

The remainder of the paper is organized as follows. In Section 2,
a description of the highly disruptive Polynomial Mutation (PLM) is
given and in Section 3 the proposed Probe Guided Mutation (PGM)
and the formulation of the cardinality constrained portfolio opti-
mization problem (CCPOP) are presented. In Section 4 the imple-
mentation of the cardinality constraint and lower and upper
bound to the MOEA are presented. The parameters setup is pre-
sented in Section 5.1 and in Section 5.2 we formulate the CCPOP
as a Mixed Integer Quadratic Program (MIQP) and we extract the
True Efficient Frontier for each one of the examined problems with
the assistance of CPLEX 12.5. Section 6 presents the performance
metrics. In Section 7 we test the performance of the proposed
PGM by using data sets from six different stock markets for the
solution of the CCPOP. In Section 8 the results are analyzed and
finally, Section 9 concludes the paper.

2. Polynomial Mutation

Mutation operators are being used as variation mechanisms to
change the offspring genes. They assist to the better exploration
of the search space. For MOEAs solving Multiobjective Problems
(MOPs), Deb and Goyal (1996) proposed a variation mechanism
called Polynomial Mutation (PLM). This operator was later
improved by Deb and Tiwari (2008).

In Polynomial Mutation as introduced by Deb and Tiwari (2008)
each decision variable xi, can take values in the interval:
xðLÞi 6 xi 6 xðUÞi ; i ¼ 1;2; . . . ;n. Where xðLÞi and xðUÞi stand respectively
for the lower and upper bounds for the decision variable i. More-
over, each decision variable has a probability Pm to be perturbed.
For each decision variable, a random value rand is drawn. If
rand 6 Pm then using the algorithm described in Fig. 1, a mutated
variable obtains its new value. If random value is r 6 0.5 it samples
to the left hand side (region between XLow and Xi), otherwise if
r > 0.5 it samples to the right hand side (region between Xi and
XUpper). The algorithm also calculates the dq value to be used in get-
ting the variable its new value. According to Deb and Tiwari (2008)
one of the main advantages of Polynomial Mutation is that it
allows us to sample the entire search space of the decision variable
even though the value to be mutated is close to one of the bound-
aries (XLow � XUpper).

Moreover, because PLM allows big jumps in the search space of
the decision variable, the optimization process has better chances
of escaping from local optima and can modify a solution when
on the boundary. However, high disruption levels might not be
good for achieving smooth approximation of the Pareto front. For
instance, if a solution is near an optimal solution then large jumps
in the decision space might not be an efficient way of discovering
other optimal solutions too. The highly disruptive PLM has been
applied in the latest version of NSGAII (Deb et al., 2002), SPEA2
(Zitzler et al., 2001) and a java implementation of PLM algorithm
provided by the jMetal framework (Durillo & Nebro, 2011).

3. Probe Guided Mutation (PGM)

The Probe Guided Mutation (PGM) operator, as its name reveals
has been developed in order to facilitate the more efficient explo-

ration of the search space. We will start analyzing PGM mechanism
by recalling Fig. 1, as the first step is common for both methods. In
particular, if rand 6 Pm then a decision variable is selected to be
mutated. Suppose a hypothetical solution vector x = (x1,x2, . . . ,x10)
which satisfies the variables bounds xðLÞi 6 xi 6 xðUÞi ; i ¼ 1;
2; . . . ;10. Also suppose that a random number rand 6 Pm occurs
for the 6th decision variable. That means that the 6th decision
variable of the parent solution should be mutated.

Selected variable for mutation

Parent solution   x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

As shown in Fig. 1 that illustrates the Polynomial Mutation
(PLM) operator, if random value is r 6 0.5 it samples to the left
hand side (region between XLow and Xi), otherwise if r > 0.5 it sam-
ples to the right hand side (region between Xi and XUpper). In PGM at
this particular point, as shown in Fig. 2 we follow a different meth-
odology. Specifically, instead of generating a random number
r 2 [0,1], we generate two random numbers, rL 2 [0,0.5] to sample
the left hand side and a random number rR 2 (0.5,1] to sample the
right hand side. Then, we calculate parameter dL

q and dR
q as shown in

Fig. 2 and their values make possible the calculation of the XL
C and

XR
C , where XL

C stands for the child decision variable that samples the
region between XLow and Xp. Similarly XR

C stands for the child
decision variable that samples the region between Xp and XUpper.
Please notice that Xp is the parent decision variable.

So far by implementing the PGM we obtained two child deci-
sion variables, one that samples in the left hand side of the parent

Begin
mutation_probability = 1/n; (where n is the number of decision variables)
ηm = distribution index;

for i=0 to N; (where N is the population size)
for z=0 to n; 

Xp = getValue(z);          
Xl = getLowerBound(z);
Xu = getUpperBound(z);

rand [0, 1]; 
if (rand <= mutation_probability) then

= =

r        [0, 1];           

if (r<= 0.5) then

= [2 + (1 − 2 )(1 − ) ]
else

= 1 − [2(1 − ) + 2( − 0.5)(1 − ) ]
end if 

= + ( − )
if ( Xc < Xl ) then

Xc = Xl ;
endif

if ( Xc > Xu ) then
Xc = Xu ;

endif

Child_Solution =  Parent_Solution.setValue(z ,  Xc);
endif

endfor
endfor

Fig. 1. Polynomial Mutation (PLM) Pseudo code.
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