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a b s t r a c t

The increasing trend towards delegating tasks to autonomous artificial agents in safety–critical socio-
technical systems makes monitoring an action selection policy of paramount importance. Agent behavior
monitoring may profit from a stochastic specification of an optimal policy under uncertainty. A probabi-
listic monitoring approach is proposed to assess if an agent behavior (or policy) respects its specification.
The desired policy is modeled by a prior distribution for state transitions in an optimally-controlled sto-
chastic process. Bayesian surprise is defined as the Kullback–Leibler divergence between the state tran-
sition distribution for the observed behavior and the distribution for optimal action selection. To provide
a sensitive on-line estimation of Bayesian surprise with small samples twin Gaussian processes are used.
Timely detection of a deviant behavior or anomaly in an artificial pancreas highlights the sensitivity of
Bayesian surprise to a meaningful discrepancy regarding the stochastic optimal policy when there exist
excessive glycemic variability, sensor errors, controller ill-tuning and infusion pump malfunctioning. To
reject outliers and leave out redundant information, on-line sparsification of data streams is proposed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Safety–critical systems integrate software, hardware and
humans in an increasing number of applications that are prone
to failures, errors and malfunctioning which could result in loss
of life, significant property damage, or damage to the environment.
Moreover, the increasing trend towards delegating tasks to auton-
omous artificial agents in safety–critical socio-technical systems
makes monitoring an action selection policy of paramount impor-
tance. As an example, consider the case of collision avoidance in
driving systems (Broggi, Medici, Zani, Coati, & Panciroli, 2012)
where the monitoring task involves a number of autonomous vehi-
cles interacting with each other in a high-speed highway. Any
monitoring system aimed to warn or prevent collisions and dan-
gerous circumstances must contemplate the expected behavior of
nearby cars to detect quickly a collision scenario. However, moni-
toring tasks are often formulated around the idea of isolated agents
with perfect rationality (Thimbleby, 2009). For on-line traffic mon-
itoring, the key aspect is to characterize the uncertain environment
the autonomous car is in and its desired optimal behavior. Simi-
larly, there is an increased requirement for condition monitoring
of nuclear power plants to ensure they are still able to operate

safely, yet efficiently (West, McArthur, & Towle, 2012). Decision
support to detect anomalies is limited by the availability of expert
knowledge and the variability of the plant conditions. Proper con-
trol and on-line monitoring of the interaction between the opera-
tors and the plant would be helpful to prevent catastrophic
accidents (Salge & Milling, 2006). In a different field, researchers
have evaluated different solutions to automate the task of gazing
at a monitor to find suspicious behaviors in video surveillance
(Fernández-Caballero, Castillo, & Rodríguez-Sánchez, 2012).
Detecting dangerous objects and intruders is essential for safety
in crowded environments, but monitoring human behaviors and
reporting about anomalies is a complex task for any computing
system.

Current automated systems function well in environments they
are designed for, that is, around their nominal operating conditions
or expected scenarios. They also perform well in environments
with ‘‘predictable’’ uncertainties as treated, for example, in the
advanced adaptive and robust control frameworks. Nevertheless,
control systems of today require substantial human intervention
when faced with novel and unanticipated situations, i.e. situations
that have not been considered at the design stage. Such situations
can arise from discrete changes in the environment, extreme dis-
turbances, structural changes in the system (for example, as a
result of damage), and the like. More specifically, biological control
systems such as the artificial pancreas (AP) must face significant

http://dx.doi.org/10.1016/j.eswa.2014.04.031
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +54 (342) 4534451; fax: +54 (342) 4553439.
E-mail address: ecmarti@santafe-conicet.gov.ar (E. Martínez).

Expert Systems with Applications 41 (2014) 6327–6345

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.04.031&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.04.031
mailto:ecmarti@santafe-conicet.gov.ar
http://dx.doi.org/10.1016/j.eswa.2014.04.031
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


levels of variability. When an action is executed by an agent, the
perceived result of the action depends on the environmental
response, including other agents, noisy measurements, hidden
states and the quality of the sensory data. In most cases, the agent
has only an approximate knowledge of these effects, but it must
nevertheless choose a nearly-optimal course of action to accom-
plish the desired control task (Sanger, 2011). Under uncertainty,
a probabilistic characterization of the desired behavior is needed
to assess if a given agent behavior respects its specification. Such
a specification is an essential element of using Bayesian inference
to detect deviations from an optimal control policy.

Almost all of the existing literature about system monitoring, is
concerned with the task to make certain controlled variables track
given set-points or set-point trajectories, while assuring closed-
loop stability. However, the purpose of autonomy (and that of
automation as a whole), is not primarily to keep the controlled
variables at their set-points as well as possible or to nicely track
dynamic set-point changes. For example, a feasible controller for
glycemic regulation based on model predictive control has been
designed to control to a zone instead of a set-point, which may pre-
vent unnecessary and dangerous overcorrection (Grosman, Dassau,
Zisser, Jovanoviĉ, & Doyle, 2010). An important issue is that the
agent decision-making policy is mainly focused on the net return
which should be maximized in the presence of disturbances and
different sources of variability, while exploiting the available noisy
and scarce measurements. Thus, behavior monitoring under uncer-
tainty has to be built upon a stochastic process specification of the
desired optimal policy.

The novelty and relevance of information contained in new
data, can be measured by the effect such data has on the observer
(monitor) (Hasanbelliu, Kampa, Principe, & Cobb, 2012).
Fundamentally, this effect is to transform the observer’s prior
beliefs into posterior beliefs, according to the Bayes theorem. The

amount of information can be measured in a natural way by the
Kullback–Leibler (KL) distance -also called relative entropy-
between the prior and posterior distributions in the observer,
regarding the available space of hypotheses about the state of a
controlled system. This facet of information, termed ‘‘surprise,’’ is
important in behavior monitoring where beliefs change over time,
in particular when malfunctioning causes a deviant behavior. Sur-
prise is a subjective information measure that quantifies how
much information a new observation contains, in relation to the
current knowledge of the system being monitored (Baldi & Itti,
2010; Itti & Baldi, 2005b). Surprise can exist only in the presence
of uncertainty, and it is related to beliefs about the dynamics of
state transitions, where the same data convey different amount
of surprise to different observers or to the same observer at differ-
ent times. To quantify the surprise factor of an observation, in this
work the novelty of information in a data stream regarding devia-
tions from the specified behavior is measured using twin Gaussian
processes (Bo & Sminchisescu, 2010).

Behavior specification under uncertainty is formalized here as a
controlled stochastic process that makes the agent policy as close
as possible to the desired one by describing both the policy and
the state transition dynamics in probabilistic terms. To this aim,
optimal choice of actions under uncertainty is a fundamental prob-
lem to be addressed in order to characterize the desired behavior
of an intelligent agent. The abstract setting for the latter can be
framed as an agent choosing actions over time, an uncertain
dynamical system whose state is affected by those actions, and a
performance criterion that the agent seeks to optimize (Todorov,
2009). The agent has the power to reshape the system dynamics
in any way it wishes. However, it pays a price for too much reshap-
ing (Dvijotham & Todorov, 2012). The key question for on-line
behavior monitoring is how the ‘‘distance’’ from optimal reshaping
can be measured using small samples from realizations of a

Nomenclature

Symbols for the glycemic model
k drift parameter
r variability parameter
BG blood glucose level
Gin systemic appearance of glucose via glucose absorption

from the gut
NHGB net hepatic glucose balance
Gout overall rate of peripheral and insulin dependent glucose

utilization
Gren excretion of glucose
VG volume of distribution of glucose
Sh hepatic sensitivity
Sp insulin sensitivity
I insulin infusion level
IG interstitial glucose
s sensor time-lag parameter
n sensor calibration parameter
kC PID proportional gain
sI PID integral time
sD PID derivative time

Symbols for the control algorithm
m mean function
cov covariance function
p(�|�,�) controlled transition probability
x̂ state estimation
Dx state change

u control action
p(�) policy
V(�) state function value
Q(�,�) state-action function value
‘ð�; �Þ immediate cost
h(�|�) passive dynamics
c discount factor
r reward function
GP Gaussian process
# cardinality
q exploration parameter
b exploitation parameter
x state space
U action space

Symbols for monitoring task
P(�) prior probability
P(�|�) posterior probability
KL(�||�) Kullback–Leibler distance
PKL pointwise Bayesian surprise
TKL robust Bayesian surprise
k(�,�) kernel
d stop threshold
g threshold for the level of sparsity
Nmax size of the training set used to model the Gaussian pro-

cess
D dictionary

6328 L. Avila, E. Martínez / Expert Systems with Applications 41 (2014) 6327–6345



Download	English	Version:

https://daneshyari.com/en/article/383640

Download	Persian	Version:

https://daneshyari.com/article/383640

Daneshyari.com

https://daneshyari.com/en/article/383640
https://daneshyari.com/article/383640
https://daneshyari.com/

