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a b s t r a c t

We investigated the performance of parametric and non-parametric methods concerning the in-sample
pricing and out-of-sample prediction performances of index options. Comparisons were performed on
the KOSPI 200 Index options from January 2001 to December 2010. To verify the statistical differences
between the compared methods, we tested the following null hypothesis: two series of forecasting errors
have the same mean-squared value. The experimental study reveals that non-parametric methods
significantly outperform parametric methods on both in-sample pricing and out-of-sample pricing. The
outperforming non-parametric method is statistically different from the other models, and significantly
different from the parametric models. The Gaussian process model delivers the most outstanding
performance in forecasting, and also provides the predictive distribution of option prices.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the recent global financial crisis, options are still one of
the most important financial instruments in risk management. The
recent surge in option trading volume demonstrates that options
are crucial means to hedge against risk. To hedge risks using
options, an investor must be aware of the fair price of the option
when buy or sell. Option pricing initiated by the Black–Scholes
model suffers from several unrealistic assumptions that conflict
with the characteristics of option data traded in the real market.
For example, the key assumption that the return of stock prices
follows a geometric Brownian motion with constant drift and
volatility is wrong. The implied volatility from the real market
exhibits a ‘‘volatility-smile’’ pattern with different values depend-
ing on the time-to-maturity and strike prices. Thus, other advanced
alternative parametric models were developed. These models
are generally divided into two classes, namely, parametric and
non-parametric.

Researchers have developed parametric models that can explain
the volatility smile in the market data under no-arbitrage
conditions. One widely used alternative parametric model is the
stochastic volatility model, which assumes that volatility follows

a random diffusion process (Heston, 1993). Another widely used
model is the jump-diffusion model (Merton, 1976), wherein the
movement of underlying assets follows a stochastic process with
jumps to Brownian motion. Since the 1990s, other advanced mod-
els have been studied actively including more generalized version
of Lévy models (Carr, Gaman, Madan, & Yor, 2003; Madan, Carr, &
Chang, 1998).

Along with the development of IT technology, non-parametric
models based on machine learning techniques have been devel-
oped to determine the option prices of real market data. Neural
network (NN) models have been used to initiate these attempts,
and have been extensively discussed in option pricing. Researchers
have investigated a variety of non-parametric methodologies for
option pricing, since Hutchinson, Lo, and Poggio (1994) demon-
strated that NN models obtain a positive result compared with
the performance of out-of-sample pricing and delta-hedging
(Amilon, 2003; Gencay & Qi, 2001; Gradojevic, Gencay, & Kukolj,
2009; Han & Lee, 2008; Lajbcygier & Connor, 1997; Liang, Zhang,
Xiao, & Chen, 2009; Park & Lee, 2012; Yang & Lee, 2011). Most
researchers argued that prediction accuracy is improved with con-
stant historical volatility compared with that of the Black–Scholes
model.

This paper investigated the efficiencies of non-parametric
machine learning techniques on financial option pricing compared
with parametric methods. This study is not limited to traditional
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comparison effects on forecasting, and verifies the power of non-
parametric methods for prediction (including recently developed
state-of-the-art machine learning techniques such as support vec-
tor machines and Gaussian processes). To verify the performance
of each model, we conducted an extensive empirical study by
applying state-of-arts parametric and non-parametric methods to
heavily traded index options. The comparison was executed using
three measures, namely, measurement of option pricing error with
various methods, measurement of option price prediction, and sta-
tistical tests of each forecasting series.

The motivation and contribution of this study are as follows. It
is the first comprehensive study to compare the performance of
both state-of-arts parametric no-arbitrage models and non-para-
metric machine learning models including Gaussian process
regression model, the most popular Bayesian kernel model, for pre-
dicting options prices especially on KOSPI 200 Index options from
January 2001 to December 2010. So far, many comparison studies
have been made to compare the performance of only no-arbitrage
parametric models or only non-parametric machine learning mod-
els or some simple parametric and non-parametric methods. In
addition, the empirical results made over KOSPI 200 Index options
reveal that non-parametric methods show statistically better per-
formance compared with parametric ones on both in-sample pric-
ing and out-of-sample pricing. Especially the Gaussian process
regression method delivers the overall outstanding performance
in prediction accuracy as well as in its capability to provide the
predictive distribution of option prices.

This paper is organized as follows. Section 2 provides a brief
background of parametric and non-parametric derivative pricing
models. Section 3 describes the design of the experiment for com-
paring the models. Section 4 presents the simulation results using
real market data of the KOSPI 200 Index option and the statistical
performance of the methods. Section 5 concludes.

2. Preliminaries

This section presents the evolution of non-parametric method-
ologies in option pricing. Thereafter, a brief review of each method-
ology prior to the design of the experiments is presented.

2.1. Non-parametric methods for option pricing

Since the 1990s, vast amounts of data have been accumulated in
data warehouses and analyzed by high-performance computers.
Rather than rely on mathematical models, attempts have been
made to build financial pricing models of supervised learning using
the characteristics of the data.

Hutchinson et al. (1994) showed that NN models exhibit positive
performance in out-of-sample pricing and delta-hedging compared
with ordinary least squares, Radial basis function networks, and
Black–Scholes formulae. This researcher divided the daily data of
the S&P 500 future option from 1987 to 1991 into 10 subperiods
and trained the NN in the formal subperiod to test the next subpe-
riod. These NN models consisted of four hidden nodes using the sig-
moid activation function. Lajbcygier and Connor (1997) improved
the prediction accuracy using a hybrid-artificial NN by understand-
ing the residuals between option prices and modified Black–Scholes
model prices; daily Australian SPI option data was used from 1992
to 1994 to verify the performance of the model. Gencay and Qi
(2001) suggested that NN models should used Bayesian regulation,
early stopping, and bagging to increase generalization. The Bayes-
ian regulation exhibited significantly higher accuracy in out-of-
sample pricing and hedging for the daily S & P 500 index option
data. Amilon (2003) predicted the bid call price and ask call price
by modeling a NN with 10 hidden nodes using the daily call options

of the Swedish stock index and compared the results with those of
the Black–Scholes model. Gradojevic et al. (2009) improved the pre-
diction performance using a modular NN, containing three to nine
modules regarding moneyness and time-to-maturity. Liang et al.
(2009) reduced the pricing errors of conventional option pricing
methods such as the binomial tree, finite difference method, and
Monte–Carlo method by using NN and support vector regression
(SVR). The estimated prices of each model were used as input fac-
tors to monitor the option market data of 122 firms in Hong Kong
from 3d to 23d to forecast the next day. However, a data-snooping
problem occurred wherein the model only learned using a short-
time window instead of a number of firms.

Many kinds of NN option-pricing models estimate only a point
forecast of option prices. Han and Lee (2008), Yang and Lee (2011),
and Park and Lee (2012) grafted Gaussian process (GP) models as
popular Bayesian kernel machines to forecast the distribution of
option prices. The GP models overcame the typical shortcoming
of NN models and improved the option pricing performance. Han
and Lee (2008) proved that GP models achieve more accurate per-
formance than advanced NN models for forecasting equity-linked
warrant data, which have larger values than traditional, theoretical
option values. Yang and Lee (2011) forecasted the implied volatil-
ity of the next day using one-day KOSPI 200 call prices of ELW and
then used the Black–Scholes equation and predicted volatility to
compute the option prices. The predicted distribution of prices
did not preserve the original distribution of price ranges especially
for deep in-the-money (ITM) options. Park and Lee (2012) sug-
gested using the positive GP to predict the distribution of call op-
tion prices with non-negative values and verify the performance
of out-of-sample pricing using KOSPI 200 Index option prices from
2008 to 2010. Table 1 shows the summary of the literatures for
non-parametric methods with their data prescriptions.

2.1.1. Artificial neural network
NN model refers to the structure of the network connecting

with a simple function of neurons like large-scale human nerve tis-
sue. Artificial neural network (ANN) is composed of the following
layers; the input layer consisting of nodes corresponding to each
input variable, the output layer corresponding to the target vari-
able, and the hidden layer treated as a non-linear function of the
linear combination of the values that are passed from the input
layer and other hidden layers. Each function /ðxÞ of node is a
non-linear weighted sum of other functions hiðxÞ given by

/ðxÞ ¼ K
X

i

wihiðxÞ
 !

; ð1Þ

where K represent the activation function such as hyperbolic tan-
gent and logistic function.

ANN model is optimized by the well-known back-propagation
algorithm depending on the initial values. It minimize the sum of
the squared error between the output value of network and the
real target value. As the network training method, (Dan Foresee
& Hagan, 1997) proposed the Bayesian regulation back-propaga-
tion method. This algorithm updates weight and bias values
according to Levenberg–Marquardt optimization and generalizes
a combination of weight for minimizing the squared error of the
network to determine the correct combination. However, it is also
difficult to interpret to identify the relationship between input
variables and output variables.

2.1.2. Support vector regression
Support vector machine (SVM) is one of the supervised learning

method to find a hyperplane of separation for given data using
kernel trick. This technique is successfully applied to non-linear
classification and regression problems as well as clustering (Jung,
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