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a b s t r a c t

This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouli-
gand–Minkowski descriptors. We decompose the original image recursively into four equal parts. In each
recursion step, we estimate the average and the deviation of the Bouligand–Minkowski descriptors com-
puted over each part. Thus, we extract entropy features from both average and deviation. The proposed
descriptors are provided by concatenating such measures. The method is tested in a classification exper-
iment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel
technique achieves better results than classical and state-of-the-art texture descriptors, such as Local
Binary Patterns, Gabor-wavelets and co-occurrence matrix.

� 2013 Published by Elsevier Ltd.

1. Introduction

Fractal theory plays a fundamental role as an auxiliary tool in
the solution of problems in areas as different as Medicine (Lopes
et al., 2010; Lorthois & Cassot, 2010; Tian-Gang, Wang, & Zhao,
2007), Physics (Chen, Chang, Weng, & Hung, 2010; Han, Wang, &
Zhou, 2008; Scarlat, Mihailescu, & Sobetkii, 2010), Engineering
(Chappard et al., 2003; Das, Agrawal, Gupta, Gupta, & Rastogi,
2009; Wool, 2008), among many others. Particularly, in tasks
involving texture analysis, fractal geometry is a powerful modeling
tool, achieving interesting results in the description and discrimi-
nation of such textures.

In the last two decades, some different fractal approaches to
deal with texture analysis have arisen, for instance, multifractals
(Harte, 2001; Lashermes, Roux, Abry, & Jaffard, 2008; Lovejoy,
Garrido, & Schertzer, 2000), the multiscale fractal dimension (Costa
et al., 2000; Manoel, da Fontoura Costa, Streicher, & Müller, 2002),
the fractal descriptors (Backes, Casanova, & Bruno, 2009; Bruno, de
Oliveira Plotze, Falvo, & de Castro, 2008; Florindo, De Castro, & Bru-
no, 2010; Plotze et al., 2005), among others. Here, we are interested
in the fractal descriptors approach.

The main idea of fractal descriptors is to extract a set of features
from the estimation of fractal dimension under different scales.
Generally, the fractal dimension is based on a power-law relation
which expresses the fractality of a structure as a function of mea-
sure scale. Unlike the fractal dimension which is a single value, the
fractal descriptors are computed over the whole power-law curve.

An example that illustrates the power of fractal descriptors is
showed in Backes et al. (2009). In that solution, the values in the

power-law of Bouligand–Minkowski fractal dimension are used
to compose a feature vector to discriminate among plant leaf tex-
tures. Actually, this method demonstrates to be successful in the
discrimination of natural textures. Such kind of texture present
an intrinsic self-similarity property which is notedly well repre-
sented by fractal modeling.

Despite their good results, conventional Bouligand–Minkowski
fractal descriptors present still a limitation in the representation
of textures, mainly when these textures present a higher degree
of complexity. This limitation is due mainly to the fact that the
descriptors are obtained from the global image, without a more
specific treatment of local characteristics present in any real image.
Thus, we can obtain more information by estimating those descrip-
tors in different scales over the image.

Considering this assumption, the present work proposes a novel
solution to extract fractal descriptors from a texture based on Bouli-
gand–Minkowski method. Here, we propose the estimation of Bouli-
gand–Minkowski descriptors at different scales (decomposition
levels) of the image. The idea is to decompose recursively the image
into 4 equal parts and, in each recursion step, we calculate an aver-
age and a deviation of the Bouligand–Minkowski descriptors. Thus,
from both average and deviation descriptors, we extract entropy
measures and compose the feature vector for the texture image.

The method is tested over well-known benchmark texture data-
sets in a classification task and the results are compared to classical
and state-of-the-art texture features methods in the literature, like
Gabor wavelets (Manjunath & Ma, 1996), Local Binary Patterns
(LBP) (Pietikäinen, Hadid, Zhao, & Ahonen, 2011), Laws energy
(Laws, 1984), Gray Level Difference Matrix (Weszka, Dyer, &
Rosenfeld, 1976), etc. The results confirmed the better accuracy
of the proposed technique and pointed to the possibility of using
the proposed method in a large number of problems involving
the description and/or discrimination of textures.
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This work divided into seven sections, including this introduc-
tion. The following provides mathematical background of fractal
theory. The third section shows the original Bouligand–Minkowski
fractal descriptors. The fourth presents the proposed method. The
following explains the experiments. The sixth shows the results
of experiments and the final section does the conclusions.

2. Fractal descriptors

Fractal geometry has been applied to a large extent of problems
in several areas (Chappard et al., 2003; Scarlat et al., 2010; Tian-
Gang et al., 2007). Actually, this geometry is more flexible than
Euclidian classical approach to describe and identify a natural
and complex object.

The most used fractal measure in the literature is the fractal
dimension. This value captures the complexity of a fractal object
or, still, its spatial occupation. Furthermore, these properties are
also related to the visual aspect of a texture image. Thus, fractal
geometry enables a link between the mathematical relations inside
a pixel structure and the subjective concept of visual distinction.
This link turns fractals into a particularly interesting tool to repre-
sent and describe textures.

The fractal dimension is estimated for real-world objects
through the following expression:

DðXÞ ¼ lim
�!0

logðNð�ÞÞ
log 1

�

� � ; ð1Þ

where N is some kind of complexity measure and � is the scale over
which the measure is taken.

Here, we use a particular method called Bouligand–Minkowski,
in which the texture image is mapped onto a surface, being the
(x,y) coordinates the image dimension and the height z the inten-
sity of the pixel at that point in the image. Therefore, this surface is
dilated by a sphere with a variable radius � and, for each radius, the
dilation volume N(�) is computed. In this way, the fractal dimen-
sion is estimated by applying Eq. (1). Fig. 1 illustrates the process.

Although fractal dimension analysis has achieved great results,
it is a unique value to describe all the richness of a complex image.
Moreover, fractal dimension is scale-dependent. This aspect com-
promises its robustness to describe a global aspect of the object.
In this context, the literature has presented other fractal ap-
proaches to describe texture images. Among such approaches, an
efficient method are the fractal descriptors. This solution employs
the whole log (�) ? log (N(�)) curve to compose the feature vectors
of the image. These values may be used directly or after some kind
of specific transform (Bruno et al., 2008; Florindo & Bruno, 2011;
Florindo, Backes, de Castro, & Bruno, 2012).

Here, we used the fractal descriptors based on the Bouligand–
Minkowski dimension, which obtained excellent results in texture
analysis, as described in Backes et al. (2009).

3. Proposed method

Here, we propose the decomposition of the original texture im-
age into decreasing cell sizes, followed by the calculation of Bouli-
gand–Minkowski descriptors in each cell. The idea is in some way
similar to that found in some classical multiscale approaches, like
discrete wavelet transform or Gaussian pyramid.

The essential idea is to divide recursively the image into four
equal parts. Each step in this process constitutes a decomposition
level. At each decomposition level, we take the average and the
standard deviation of descriptors in each cell. Thus, we construct
a feature vector from the entropy measure of such descriptors. Fi-
nally, we apply a simple attribute selection approach to the feature
vector to compose the final descriptors.

We start with a digital image I : ½N � N� ! R. This image is
decomposed into levels lj1 6 l 6 lmax, where lmax is the maximum
possible level in the image, given by lmax = ceil (log2(N)). In each
decomposition level, the image is partitioned into equal regions
Rljk:

Rljk ¼ fx; yjðj� 1Þ � 2l
6 x 6 ðjÞ � 2l; ðk� 1Þ � 2l

6 x 6 ðkÞ � 2lg:

In each region R, we apply the procedure described in the above sec-
tion and obtain the Bouligand–Minkowski descriptors Dljk. For each
level l, we obtain the average descriptors DM

l and deviation descrip-
tors Dr

l :

DM
l ¼

P
jkDljk

2l
;

Dr
l ¼

X
ðDljk � DMðlÞÞ2:

In the following, we extract entropy features from both average
and deviation descriptors in each level. Initially, for each compo-
nent (index) i of Bouligand–Minkowski average descriptors at all
levels, we construct another vector ~uðiÞ, that is:

~uðiÞ ¼ DM
1 ðiÞD

M
2 ðiÞD

M
3 ðiÞ � � �D

M
lmax
ðiÞ

h i
:

In the same fashion, we construct the vectors ~wðiÞ, from deviation
descriptors:

~wðiÞ ¼ Dr
1 ðiÞD

r
2 ðiÞD

r
3 ðiÞ � � �D

r
lmax
ðiÞ

� �
:

Then, we compute one Shannon entropy value for each vector. In or-
der to simplify the notation, we call u a generic vector. The entropy
is estimated through:

Fig. 1. Bouligand–Minkowski fractal dimension estimation. (a) Original texture. (b) The gray-level image is mapped onto a surface in x—y—z coordinates. (c) Each point in the
surface is dilated through a sphere with radius r.
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