
The solution algorithms for the multiprocessor scheduling with workspan criterion

Radosław Rudek a,⇑, Agnieszka Rudek b, Andrzej Kozik b

a Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland
b Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

a r t i c l e i n f o

Keywords:
Multiprocessors
Scheduling
Learning
Deteriorating
Makespan
Workspan

a b s t r a c t

In this paper, we consider multiprocessor scheduling problems, where each job (task) must be executed
simultaneously by the specified number of processors, but the indices of the processors allotted to each
job do not have to be contiguous (i.e., jobs can be fragmentable). Unlike other research in this domain, we
analyse the problem under the workspan criterion, which is defined as the product of the maximum job
completion time (makespan) and the number of used processors. Moreover, the job processing times can
be described by non-increasing or non-decreasing functions dependent on the start times of jobs that
model improvement (learning) or degradation (deteriorating), respectively. To solve the problems, we
construct some polynomial time algorithms and analyse numerically their efficiency.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The development of Massive Parallel Processor (MPP) systems
implies that scheduling of multiprocessor jobs (tasks) has attracted
significant interest in scheduling community (Drozdowski, 1996,
2009; Fan et al., 2012; Turek et al., 1996). In such systems jobs
(tasks) can be performed parallel (in the same time) by more than
one processor. However, multiprocessor jobs can model not only
applications executed on MPP systems, but also many industrial
processes, in which a single job (product) has to be processed in
the same time by multiple machines or human workers (Caramia
and Giordani, 2010). Namely, multiprocessor job scheduling prob-
lems occur for instance during production planning and project
scheduling (Vizing, 1981), in chemical plants (Bła _zewicz et al.,
1984) or during allocation of vessels to a berth with multiple quay
cranes (Guan et al., 2002).

Usually, in such problems, the objective is to find a schedule
(that includes start times of jobs and allotment of processors) that
minimizes the maximum job completion time (makespan). Never-
theless, such time criteria can be insufficient for some practical
cases, where the cost is significant, which is also related with the
number of involved processor to complete the jobs (e.g., the finan-
cial cost of renting servers or hiring a crew, or the amount of used
energy). Therefore, each processor (e.g., server, human worker) can
be characterized by a rate, which is the cost (e.g., financial or en-
ergy) of using it per time unit. Thus, the total cost of processing
jobs is also determined by the number of used processors. In other

words, this cost criterion is the product of the maximum job
completion time (makespan) and the number of used processors,
which we will call the workspan.

On the other hand, in many real-life systems the efficiency of
processors can change due to learning or deteriorating of proces-
sors (see Cheng et al., 2004; Gawiejnowicz, 2008; Janiak and
Rudek, 2011; Kuo and Yang, 2007; Lai and Lee, 2010; Lee et al.,
2009; Toksari and Güner, 2010; Wang et al., 2009; Yang and Kuo,
2007). Despite the existence of learning and deterioration effects
is indisputable, they have never been considered in the context
of scheduling multiprocessor jobs.

Therefore, in this paper, we will analyse multiprocessor job
scheduling problems with the workspan criterion and processing
times of jobs that can be constant or described by non-increasing
(learning) or non-decreasing (deteriorating) functions dependent
on job starting times. To the best of our knowledge, the results pre-
sented in this paper have never been investigated in the scheduling
domain.

This paper is organized as follows. The next section contains
model and problem formulation. Subsequently, description of
approximation algorithms is provided, followed by an experimen-
tal verification of their efficiency. The last section concludes the
paper.

2. Problem formulation

There are given a set of J = {1, . . . ,n} of n jobs and m parallel
identical processors P = {P1, . . . ,Pm}. It is assumed that there are
no precedence constraints between the jobs, they are non-
preemptive and available for processing at time 0. Each processor
can process (execute) one job at a time, however, each job j 2 J to

0957-4174/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2012.11.005

⇑ Corresponding author. Tel.: +48 71 368 0378; fax: +48 71 368 0376.
E-mail addresses: radoslaw.rudek@ue.wroc.pl (R. Rudek), agnieszka.wielgus@

pwr.wroc.pl (A. Rudek), andrzej.kozik@pwr.wroc.pl (A. Kozik).

Expert Systems with Applications 40 (2013) 2799–2806

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2012.11.005
mailto:radoslaw.rudek@ue.wroc.pl
mailto:agnieszka.wielgus@pwr.wroc.pl
mailto:agnieszka.wielgus@pwr.wroc.pl
mailto:andrzej.kozik@pwr.wroc.pl
http://dx.doi.org/10.1016/j.eswa.2012.11.005
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


be completed requires continuously in the same time the given
number of processors dj. The indices of the processors allotted to
each job do not have to be contiguous, thus, they are called
fragmentable jobs (tasks). It models many real-life settings that
occur in computer and manufacturing systems (e.g., Drozdowski,
2009; Turek et al., 1996). Each job is also characterized by the
processing time pj. Therefore, to complete job j, it is required to
allot dj processors that are available continuously by time pj.

Nevertheless, in many real-life systems the efficiency of proces-
sors can change with time due to their improvement or degrada-
tion, which are called learning and deteriorating, respectively (see
Gawiejnowicz, 2008; Lai & Lee, 2010; Lee et al., 2009; Wang,
2009; Yang & Kuo, 2011). Furthermore, even if the efficiency of
processors is constant, the jobs can deteriorate and require more
time if they are processed later (see Cheng et al., 2004). Deteriorat-
ing and learning can be modeled by job processing times described
by non-decreasing (deteriorating) and non-increasing (learning)
functions dependent on start times of jobs. Therefore, to model
more precisely multiprocessor problems by taking into consider-
ation the above observations, in this paper, the processing time
of each job j is described by the following function dependent on
its start time Sj:

~pjðSjÞ ¼ pjð1þ SjÞaj ; ð1Þ

where pj is the normal processing time that is defined as the time
required to process (execute) a job if there is no learning nor dete-
riorating of the processors (i.e., pj , ~pjð0Þ) and aj is the learning/
deteriorating factor that describes the impact of these phenomena
on the processing time of job j. Note that aj < 0 and aj > 0 represent
learning and deteriorating factors, respectively, whereas aj = 0 mod-
els cases when there is no changing in the efficiency of processors
(i.e., in job processing times) or it is negligible. For convenience
we will also use ~pj instead of ~pjðSjÞ.

Since the jobs are fragmentable, then for the given number of
processors m the feasible schedule S can be defined by the set
S = {S1, . . . ,Sj, . . . ,Sn}, where Sj denotes the start time of job j, and
the jobs are assigned to processors according to the non-decreasing
order of Sj. On this basis, the completion time of job j can be calcu-
lated Cj ¼ Sj þ ~pj and the maximum completion time (makespan)
for fixed m and S is equal to Cmax(S) = maxj2J{Cj}.

Usually, the objective is to find such a schedule S that minimizes
the makespan Cmax(S). Nevertheless, such time criteria can be
insufficient for some practical cases, where the cost related with
the number of involved processor to complete the jobs (e.g., the
financial cost of renting servers or hiring a crew, or the amount
of used energy) is significant. Therefore, each processor (e.g.,
server, human worker) can be characterized by a rate, which is
the cost (e.g., financial or energy) of using it per time unit. Thus,
the total cost of processing jobs is also determined by the number
of used processors.

Let us define the discussed problem formally. The objective is to
determine the number of processors m and the feasible schedule of
jobs S on these processors such that the following cost criterion
value Wmax is minimized:

Wmaxðm; SÞ ¼ m � CmaxðSÞ: ð2Þ

Note that Wmax depends on the makespan Cmax and on the other
hand the product of a job processing time and the number of pro-
cessors used to execute this job is often called the workload (i.e.,
dj~pj), thus, we will call the defined criterion Wmax as the workspan.

For convenience and to keep an elegant description of the con-
sidered problems we will use the three field notation scheme XjYjZ
(see Graham et al., 1979), where X describes the machine/proces-
sor environment, Y describes job characteristics and constraints
and Z represents the minimization objectives. According to this

notation, the problems analysed in this paper will be denoted as
follows: PjsizejjWmax, Pjsizej, detjWmax, Pjsizej, lejWmax, where
aj = 0, aj > 0 and aj < 0, respectively, and sizej is used to denote that
each job has the fixed number of processors required to execute
(process) this job.

3. Algorithms

Note that the problem for fixed m is NP-hard even for constant
job processing times (aj = 0 for j = 1, . . . ,n) (see Du & Leung, 1989).
Thus, the analysed problem is not less complex. Thereby, it is
highly unlikely to find its optimal solution in polynomial time. It
is hard, what to do. Nevertheless, we propose some heuristics.

The main idea of the presented algorithms is to construct a
schedule S by determining the sequence of jobs p = hp(1), . . . ,
p(i), . . . ,p(n)i, where p(i) denotes the index of a job in position i
in p. Namely, for the given number of available processors m, jobs
are assigned to processors in the given sequence p and for each of
them the minimum feasible start time is calculated. Thereby, for
each j = p(i) (for i = 1, . . . ,n), the start time Sj has to be found such
that at least dj processors are idle during time ½Sj; Sj þ ~pj�. In the
further part of the paper, an idle time of a processor will be called
a gap, and determining the earliest feasible Sj is based on finding
gaps on dj processors that cover range ½Sj; Sj þ ~pj�. Note that we
operate on rational numbers, thus, we are not limited to integer
numbers only. An example allotment of processors to jobs is
shown in Fig. 1.

To describe formally the method of determining Sj for each job
in a sequence p, let us define the following structures (GapList
and PointerList) and corresponding functions (in alphabetical
order for each structure):

� GapListi – doubly linked list structure that stores idle times
(called gaps) for processor Pi; each element in the list (i.e.,
gap) is characterized by its start time Sg, its end time Cg and
the index of corresponding processor Pg (for this case Pg = Pi);
the list is ordered according to the non-decreasing order of Sg;
� GapList={GapList1, . . . ,GapListm} – the set of all lists storing

idle times (gaps) for processors;
– AddGap(Pi,Sg,Cg) – add at the end of GapListi of processor Pi

a new gap with the start time Sg and end time Cg;
– ClearGapList(Pi) – clear the list of gaps corresponding to

processor Pi;
– DeleteGap(g) – delete gap g from the list corresponding to

processor Pg;
– GapEndTime(g) – return the end time Cg of gap g;
– GapProcessor(g) – return the index of the processor Pg

corresponding to gap g;
– GapStartTime(g) – return the start time Sg of gap g;
– Head(GapList,Pi) – return the first gap on the list of gaps

corresponding to processor Pi;
– InsertGapAfter(g,Sg,Cg) – insert a new gap with the given

start time Sg and end time Cg after gap g; index of the
corresponding processor Pg is the same as for g;

– NextGap(g) – return a gap from GapList that is a successor
of g; the corresponding processor is unambiguously defined
by gap g;

– SetGapEndTime(g,Sg) – set the end time Cg of gap g;
– SetGapStartTime(g,Sg) – set the start time Sg of gap g;
� PointerList – doubly linked list of m elements; each of

them stores pointer p to a gap from GapList such that each
p corresponds to a gap on a different processor;
– AddPointer(g) – add at the end of PointerList a new

element that points to gap g;
– AssignGapToPointer(p,g) – set that element p from

PointerList points to gap g;

2800 R. Rudek et al. / Expert Systems with Applications 40 (2013) 2799–2806



Download English Version:

https://daneshyari.com/en/article/383934

Download Persian Version:

https://daneshyari.com/article/383934

Daneshyari.com

https://daneshyari.com/en/article/383934
https://daneshyari.com/article/383934
https://daneshyari.com

