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a b s t r a c t

In this paper a new method for dynamic parameter adaptation in particle swarm optimization (PSO) is
proposed. PSO is a metaheuristic inspired in social behaviors, which is very useful in optimization prob-
lems. In this paper we propose an improvement to the convergence and diversity of the swarm in PSO
using fuzzy logic. Simulation results show that the proposed approach improves the performance of
PSO. First, benchmark mathematical functions are used to illustrate the feasibility of the proposed
approach. Then a set of classification problems are used to show the potential applicability of the fuzzy
parameter adaptation of PSO.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy logic or multi-valued logic is based on fuzzy set theory
proposed by (Zadeh, 1965a), which helps us in modeling knowl-
edge, through the use of if-then fuzzy rules (Yen & Langari, 1998).

The fuzzy set theory provides a systematic calculus to deal with
linguistic information (Kulkarni, 2001), and that improves the
numerical computation by using linguistic labels stipulated by
membership functions (Jang, Sun, & Mizutani, 1997; Zadeh,
1965b, 1997).

Particle swarm optimization (PSO) that was introduced by
Kennedy and Eberhart in 1995 (Kennedy & Eberhart, 1995, 2001),
maintains a swarm of particles and each particle represents a pos-
sible solution. These particles ‘‘fly’’ through a multidimensional
search space, where the position of each particle is adjusted
according to your own experience and that of its neighbors
(Engelbrecht, xxxx).

PSO has recently received many improvements and applications
(Bingül & Karahan, 2011). Most of the modifications to PSO are to
improve convergence and to increase the diversity of the swarm
(Engelbrecht, xxxx). For example, S. Muthukaruppan, M.J. Er pro-
posed a hybrid particle swarm optimization based fuzzy expert sys-
tem for the diagnosis of coronary artery disease (Muthukaruppan &
Er, 2012). Chunshien Li, Tsunghan Wu proposed an adaptive fuzzy
approach to function approximation with PSO and the recursive
least squares estimator (Li & Wu, 2011). So in this paper we propose
an improvement to the convergence and diversity of PSO through
the use of fuzzy logic. Basically, fuzzy rules are used to control the

key parameters in PSO to achieve the best possible dynamic
adaptation of these parameter values (Abdelbar, Abdelshahid &
Wunsch, 2005; Valdez, Melin & Castillo, 2011). First, benchmark
mathematical functions are used to illustrate the feasibility of the
proposed approach. Then a set of classification problems are used
to show the potential applicability of the fuzzy parameter
adaptation of PSO.

The rest of the paper is organized as follows. Section 2 describes
the proposed methodology. Section 3 shows how the experiments
were performed with the proposed method and the simple method
using the benchmark functions defined in Section 2. Section 4
shows how to perform the statistical comparison with all its
parameters and analysis of results. Section 5 shows the design of
fuzzy classifier. Section 6 shows the methodology to follow for
the design of fuzzy classifier. Section 7 shows how the experiments
were performed with the proposed method and the simple method
in the design of fuzzy classifier. Section 8 shows how to perform
the statistical comparison with all its parameters and analysis of
results. Section 9 shows the conclusions of the design of fuzzy clas-
sifier design. Finally, the conclusions of this paper are presented.

2. Methodology for parameter adaptation

The dynamics of PSO is defined by Eqs. (1) and (2), which are
the equations to update the position and velocity of the particle,
respectively.

xiðt þ 1Þ ¼ xiðtÞ þ v iðt þ 1Þ ð1Þ

v ijðt þ 1Þ ¼ v ijðtÞ þ c1r1ðtÞbyijðtÞ � xijðtÞc þ c2r2jðtÞbŷjðtÞ � xijðtÞc
ð2Þ
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Parameters c1 and c2 were selected to be adjusted using fuzzy logic,
since those parameters account for the movement of the particles.

The parameter c1 or cognitive factor represents the level of
importance given the particle to its previous positions.

The parameter c2 or social factor represents the level of impor-
tance that the particle gives the best overall position.

Based on the literature (Engelbrecht, xxxx) the recommended
values for c1 and c2 must be in the range of 0.5 and 2.5, plus it is
also suggested that changing the parameters c1 and c2 dynamically
during the execution of this algorithm can produce better results.

In addition it is also found that the algorithm performance mea-
sures, such as: diversity of the swarm, the average error at one
point in the execution of the algorithm, the iterations themselves,
needs to be considered to run the algorithm, among others. In our
work all the above are taken in consideration for the fuzzy systems
to modify the parameters c1 and c2 dynamically changing these
parameters in each iteration of the algorithm.

For measuring the iterations of the algorithm, it was decided to
use a percentage of iterations, i.e. when starting the algorithm the
iterations will be considered ‘‘low’’, and when the iterations are
completed it will be considered ‘‘high’’ or close to 100%. To repre-
sent this idea we use:

Iteration ¼ Current Iteration
Maximum of Iterations

ð3Þ

The diversity measure is defined by Eq. (4), which measures the
degree of dispersion of the particles, i.e. when the particles are clo-
ser together there is less diversity as well as when particles are
separated then diversity is high. As the reader will realize the equa-
tion of diversity can be considered as the average of the Euclidean
distances between each particle and the best particle.

Diversity ðSðtÞÞ ¼ 1
ns

Xns

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx

j¼1

ðxijðtÞ � �xjðtÞÞ2
vuut ð4Þ

The error measure is defined by Eq. (5), which measures the dif-
ference between the swarm and the best particle, by averaging the
difference between the fitness of each particle and the fitness of
the best particle.

Error ¼ 1
ns

Xns

i¼1

ðFitnessðxiÞ �MinFÞ ð5Þ

Therefore for designing the fuzzy systems, which dynamically
adjust the parameters of c1 and c2, the three measures described
above were considered as inputs. It is obvious that for each fuzzy
system the outputs are c1 and c2.

In regards to the inputs of the fuzzy systems, the iteration var-
iable has by itself a defined range of possible values which range
from 0 to 1 (0 is 0% and 1 is the 100%), but with the diversity
and the error, we perform a normalization of the values of these
to have values between 0 and 1. Eq. (6) shows how the normaliza-
tion of diversity is performed and Eq. (7) shows how the normali-
zation of the error is obtained.

DiverNorm ¼
if MinDiver ¼ MaxDiverfDiverNorm ¼ 0
if MinDiver–MaxDiverfDiverNorm ¼ FbNorm

�
ð6Þ

FnNorm ¼ Diversity�MinDiver
MaxDiver �MinDiver

Eq. (6) shows two conditions for the normalization of diversity, the
first provides that where the maximum Euclidean distance is equal
to the minimum Euclidean distance, this means that the particles
are exactly in the same position so there is no diversity. The second
condition deals with the cases with different Euclidean distances.

ErrorNorm ¼
if MinF ¼ MaxFfErrorNorm ¼ 1
if MinF – MaxF fErrorNorm ¼ Error�MinF

MaxF�MinF

(
ð7Þ

Eq. (7) shows two conditions to normalize the error, the first one
tells us that when the minimum fitness is equal to the maximum
fitness, then the error will be 1; this is because the particles are
close together. The second condition deals with the cases with dif-
ferent fitness.

The design of the input variables can be appreciated in Figs. 1, 2
and 3, which show the inputs iteration, diversity, and error respec-
tively, each input is granulated into three triangular membership
functions.

For the output variables, as mentioned above, the recom-
mended values for c1 and c2 are between 0.5 and 2.5, so that the
output variables were designed using this range of values. Each
output is granulated in five triangular membership functions, the
design of the output variables can be seen in Figs. 4 and 5, c1 and
c2 respectively.

Having defined the possible input variables, it was decided to
combine them to generate different fuzzy systems for dynamic
adjustment of c1 and c2. Based on the combinations of possible in-
puts, there were seven possible fuzzy systems, but it was decided
to consider only the systems that have more inputs (since we pre-
viously considered fuzzy systems with only a single input), so that
eventually there were three fuzzy systems which are defined
below.

The first fuzzy system has iteration and diversity as inputs,
which is shown in Fig. 6. The second fuzzy system has iteration
and error as inputs and is shown in Fig. 7. The third fuzzy system
has iteration, diversity, and error as inputs, as shown in Fig. 8.

To design the rules of each fuzzy system, it was decided that in
early iterations the PSO algorithm must explore and eventually ex-
ploit. Taking into account other variables such as diversity, for
example, when diversity is low, that is, that the particles are close
together, we must use exploration, and when diversity is high we
must use exploitation.

The rules for each fuzzy system are shown in Figs. 9–11, for the
fuzzy systems 1, 2 and 3, respectively.

Also for the comparison of the proposed method with respect to
the PSO without parameter adaptation, we considered benchmark
mathematical functions, defined in Haupt & Haupt, xxxx; Marcin,
2005, which are 27 in total, and in each we must find the parame-
ters that give us the global minimum of each function. In Fig. 12
there is a sample of the functions that are used.

Fig. 1. Input 1: iteration.

P. Melin et al. / Expert Systems with Applications 40 (2013) 3196–3206 3197



Download	English	Version:

https://daneshyari.com/en/article/383970

Download	Persian	Version:

https://daneshyari.com/article/383970

Daneshyari.com

https://daneshyari.com/en/article/383970
https://daneshyari.com/article/383970
https://daneshyari.com/

