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a b s t r a c t

This paper describes a data-driven approach to sensor data validation. The data originates from a network
of sensors embedded in an indoor environment such as an office, home, factory, public mall or airport.
Data analysis is performed to automatically detect events and classify activities taking place within
the environment. Sensor failure and in particular intermittent failure, caused by electrical interference,
undermines the inference processes. PCA and CCA are compared for detecting intermittent faults and
masking such failures. The fault detection relies on models built from historical data. As new sensor
observations are collected the model is updated and compared to that previously estimated, where a dif-
ference is indicative of a failure.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper describes a data-driven approach to online data rec-
onciliation and validation for a small network of sensors. The sen-
sors are embedded in an environment such as office facilities to
monitor activity and detect unusual activity or behaviors. Using
the language of automated diagnosis, the activity or behavior un-
der observation corresponds to the process under observation. Sta-
tistical approaches are employed to analyze the data and infer the
type of activity taking place. As sensors reading are collected they
are checked for validity in real time. These sensors are susceptible
to interference or could fail, undermining the performance of the
system. This paper presents a method to detect and mask the read-
ings deemed to be in error. Masking can be achieved in a number of
ways; in this work statistical models are employed. A difficulty in
this application results from the fact that the process (activity) un-
der observation can cause deviations in the sensor outputs that are
indistinguishable from noise and/or sensor faults.

The approach adopted is to model the relationships between
sensors rather than individual sensors and using these relation-
ships to cross-validate and correct incoming readings. Thus the
first step is to determine the relationships between sensor outputs
and construct a statistical model. The main contribution of this pa-
per is a data-driven method for detecting permanent and transient
faults on a small network of sensors; it is exploits the sensor–sen-
sor relationships to deal with uncertainty in sensor observations
caused by noise or sensor failure. Sensor–sensor relationships are
discovered using historical data. The search for similarity extends

beyond sensors observing a similar process or proximity of sensors.
It attempts to characterize any relationship over time. The method-
ology was tested offline on data from a smart home.

Section 2 introduces related work, while Section 3 describes the
methodology. Results are presented in Section 4 and discussed in
Section 5. Finally, Section 6 concludes the paper.

2. Related work

The objective is to detect and correct measurement errors. The
errors encountered are either systematic (gross errors) or random
fluctuations. This work deals with random errors caused by electri-
cal and other types of interference and gross errors caused by sen-
sor faults. In a first step, a sensor reading or readings are identified
as anomalous. A second step reconciles all erroneous readings.

The problem is essentially one of diagnosing faults, although,
unlike most diagnosis, characterizing the nature of the fault is
not necessary. Diagnosis of system faults is a field that has been
widely studied in applications such as aerospace (Dearden et al.,
2004), process control (Juricek, Seborg, & Larimore, 2004a), and
electricity networks (Bauer, Botea, Grastien, Haslum, & Rintanen,
2011). With the proliferation of distributed communication net-
works, and in particular sensor networks, the diagnosis of such sys-
tems has also received much attention (Chen, Kher, & Somani,
2006; Gao, Xu, & Li, 2007; Hai Li, Price, Stott, & Marshall, 2007;
Jiang, 2009; Krishnamachari & Iyengar, 2004; Lee & Choi, 2008).
Most networks are large networks; however similar techniques
have been applied to smaller networks. Kim and Prabhakaran
(2011) describe fault diagnosis for a very small network, a body
sensor network (BSN). The characteristics of BSN are similar to
the sensor network presented here, albeit much smaller in size
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than the environment network. There is a relatively small number
of sensor nodes; each node comprising a wireless communication
unit and a sensing element.

The papers mentioned above are broadly classified as model-
based or data driven, although there is some overlap incorporating
both model and data-driven. A model may be created from histor-
ical data in data-driven methods. The model-based approach may
employ physical and other types of models. Irrespective of the type
of model, it is used to reason about the behavior of the system,
comparing the observed behavior with expected (predicted)
behaviors. Approaches to model-based diagnosis differ principally
by the type of model employed. These include Bayesian (Abreu,
Zoeteweij, & van Gemund, 2009; Krishnamachari & Iyengar,
2004), and hidden Markov models (HMM) (Srivastava, 2005; Ying,
Kirubarajan, Pattipati, & Patterson-Hine, 2000). Prediction filters
have also been investigated in the form of Kalman filters (Kim,
Suk, & Kyung, 2010) and particle filters (Zhou & Liu, 2010). The
diagnosis problem may be cast as a feature classification problem
and standard classification methods used such neural networks
(Maidon, Jervis, Dutton, & Lesage, 1997; Venkatasubramanian,
Vaidyanathan, & Yamamoto, 1990), fuzzy classifier (Lo, Fung, &
Wong, 2009), and clustering (Iverson, 2004). The work presented
a statistical model built from historical data. Statistical multivari-
ate techniques (Ma, Wong, Jang, & Tseng, 2010) have been em-
ployed in data-driven diagnosis. A popular statistical approach is
principle component analysis (PCA) (Wise, Gallagher, Butler,
White, & Barna, 1999; Yue, Qin, Markle, Nauert, & Gatto, 2000;
Zhang & Wang, 2004; Zhou, Zhang, & Wang, 2004). More recent
is the canonical correlation analysis (CCA) and variants applied to
fault detection as proposed in (Chen, Jiang, & Yoshihira, 2006; Jur-
icek, Seborg, & Larimore, 2004b; Kang, Chen, & Jiang, 2010).

The model-based and data-driven methods have been adapted
to wireless sensor networks (WSN). Fault detection in WSN ex-
ploits the correlation in a network of sensor nodes. For example,
two temperature sensors in a network in close proximity are likely
to observe a similar temperature. Thresholds that must not be ex-
ceeded are defined for the difference between two sensor observa-
tions and for the increment in a unit time step (Lee & Choi, 2008).
Jiang (2009) improves on this with a weighted average scheme.
The author in Krishnamachari and Iyengar (2004) exploits correla-
tion using a Bayesian algorithm. The proposed method exploits
correlation; however it does not rely purely on proximity and/or
sensor similarity.

In many safety critical systems, a redundant unit replaces a
faulty unit. In a static redundancy scheme, a voting system selects
one from at least 3 units without performing fault detection. In a
dynamic scheme, the faulty unit is replaced by a redundant unit
after fault detection has identified the faulty unit. Fault hiding
can be used to recover seamlessly from a fault (Guenab, Weber,
Theilliol, & Zhang, 2011; Steffen, 2006; Richter, 2011). Once a sen-
sor fault is isolated, the expected sensor output (from the model) is
used to validate and if necessary mask the real faulty value in sub-
sequent analyses.

3. Methodology

The objective when analyzing smart environment data is to de-
tect anomalous events or activities. The standard method is to
build models of normal events and any new activity detected is
compared. If an activity has not been previously detected, it is
deemed abnormal. This assumes correct sensor measurements.
Any significant deviation of raw measurements from the norm
not resulting from the process under observation will undermine
the analyses. A method is proposed to disambiguate process
deviation from sensor deviation; combining standard data

reconciliation techniques with failure detection techniques. The
proposed method comprises two concurrent threads. One thread
deals with random measurement fluctuations using a standard
data reconciliation technique while the second thread detects
and locates the source of systematic deviations in sensor readings
(gross error) which may be caused either by a faulty sensor or
anomalous process. If a failed sensor cannot be found, it is assumed
that the process under observation is the source of the systematic
deviation. Models are constructed from historical data and refined
with incoming sensor readings. Using these models a sensor fault
can be detected and the faulty sensor located. There is no need
to identify the fault mechanism. Thus expected-behavior is mod-
eled rather than fault-behavior as is normally the case in fault diag-
nosis. The failed sensor is located by modeling the relationships
between the sensors in normal operation. The system dynamically
searches for relationships between sensors and models the found
relationships. Each new sensor reading is tested against the known
relation, to establish its validity. The challenge is to find, for each
sensor, the set of sensors that correlate and their relationship
which may be dynamic. An intelligent environment contains a het-
erogeneous array of sensors. Consequently, the sensor readings dif-
fer in data type, amplitude, and frequency and may comprise
continuous (e.g. temperature) and discrete (e.g. switch state), com-
pound (e.g. an image). A representation that caters for all these
types is required. A suitable representation uses a probability dis-
tribution allowing all sensors to be treated in the same manner and
information to be combined.

3.1. Data reconciliation

The classic data reconciliation technique (Eq. (1)) is not suitable
on its own, if reconciling a datum means that an underlying devi-
ation in the process will also be masked. Eq. (1) assumes no sys-
tematic errors are present in the measurement and that the
measurement noise is random. This is the case for interference
seen within the sensor network, which comprises sensors and all
measurement related equipment. For an ensemble of n measure-
ments yi (sensor readings)

yi ¼ xi þ e;

where yi the ith sensor measurement, and xi is the ith true (unmea-
sured) value. The value e is the measurement error, consisting of
random fluctuations only and has a Gaussian distribution. The
objective is to minimize the least square correction error

min
x;y�

Xn

i¼1

y�i � yi

ri

� �2

ð1Þ

Subject to the activities maximum project duration of a day and
bounding x and y, the sensor minimum and maximum values:

ymin 6 y� 6 ymax

xmin 6 x� 6 xmax

where y�i is the corrected value of the ith sensor measurement, and
ri is the standard deviation, yi is the sensor measurement that max-
imizes the correlation with neighboring sensors. Neighborhood
does not simply imply physical proximity of two or more sensors
but it also implies sensors that exhibit some relationship (i.e. corre-
late). Canonical Correlation Analysis (CCA) is used to find correlat-
ing sensors.

3.2. Systematic error detection

Sensor signals are usually multi-dimensional and might span a
large spectrum/space. Signatures of an unfolding scene tend to ex-
ist in a subspace. Methods have been proposed to discover the

D.N. Monekosso, P. Remagnino / Expert Systems with Applications 40 (2013) 3248–3255 3249



Download	English	Version:

https://daneshyari.com/en/article/383974

Download	Persian	Version:

https://daneshyari.com/article/383974

Daneshyari.com

https://daneshyari.com/en/article/383974
https://daneshyari.com/article/383974
https://daneshyari.com/

