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a b s t r a c t

In semiconductor manufacturing processes, sensor data are segmented and summarized in order to
reduce storage space. This is conventionally done by segmenting the data based on predefined chamber
step information and calculating statistics within the segments. However, segmentation via chamber
steps often do not coincide with actual change points in data, which results in suboptimal summariza-
tion. This paper proposes a novel framework using abnormal difference and free knot spline with knot
removal, to detect actual data change points and summarize on them. Preliminary experiments demon-
strate that the proposed algorithm handles arbitrarily shaped data in a robust fashion and shows better
performance than chamber step based segmentation and summarization. An evaluation metric based on
linearity and parsimony is also proposed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In semiconductor manufacturing processes, sensor data are re-
corded on a second by second basis. Sometimes referred to as trace
data, they are a sequence of discrete time signals, heavily used for
supervisory purposes such analytics or monitoring. Examples of
analytics include yield prediction and management, fault detection
and classification (FDC) (He & Wang, 2007), virtual metrology
(Kang et al., 2009), while monitoring refers keeping an eye on man-
ufacturing parameters’ trends (Qin, Cherry, Good, Wang, &
Harrison, 2006; Sarfaty et al., 2002; Spanos, Guo, Miller, &
Levine-Parrill, 1992). The implementation of such supervisory
tasks allows automatic maintenance as well as effective quality
control, and thus benefit a semiconductor fabrication plant with
dramatic savings in cost. Therefore the appropriate utilization of
sensor data is crucial for a semiconductor company, as the industry
continuously faces price competitions.

A semiconductor company’s sensor data amounts up to units of
gigabytes per day. Therefore they are compressed into smaller and
manageable bits of information that are easier to access and ana-
lyze, in spite of the information loss. This task is normally carried
out in two steps: segmentation, where data are segmented when-
ever the data trend has changed, and summarization, where repre-
sentative values are calculated from each segment. Indeed,

segmentation can be best done by manually finding change points
in the data. However, thousands of wafers are recorded concur-
rently by myriad sensors in a semiconductor manufacturing pro-
cess. Finding a subjective set of change points among such a big
data is unrealistic or otherwise costly without computational
means.

A frequently used solution addressing this problem employs the
manufacturing recipe. In this particular solution, each segment is
set equal to the interval between the beginning and end of each
chamber step, a set of instructions in the manufacturing recipe.
Once the segments are defined, each segment is summarized by
statistics, such as the minimum, maximum, mean, and standard
deviation.

The assumption behind chamber step based segmentation is
that a data change point will occur if and only if the chamber step
changes. But this assumption is not always correct. Take Fig. 1(a)
for instance, where chamber step based segmentation partitions
the data into seven segments. Ideally, no segmentation is needed
for T1, because the underlying signal is invariant. On the other
hand, T2 needs to be segmented with much finer granularity, so
that each segment can represent a unique trend in data. Sometimes
segmentation points do not coincide with actual change points as
in Fig. 1(b), because manufacturing actions often show latencies
before actual data changes take place.

The other assumption of chamber step based segmentation is
that the minimum, maximum, mean, and standard deviation are
sufficient for representing a segment. It is satisfied if the data are
discrete, where the sensor data values are constant within each
segment as in Fig. 1(a). The minimum and maximum reflect the

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.11.001

⇑ Corresponding author. Tel.: +82 01 7203 6275.
E-mail addresses: ejpark04@snu.ac.kr (E.L. Park), uni208@snu.ac.kr (J. Park),

ad1392@snu.ac.kr (J. Yang), zoon@snu.ac.kr (S. Cho), younghaklsi.lee@samsung.com
(Y.-H. Lee), haes.park@samsung.com (H.-S. Park).

Expert Systems with Applications 41 (2014) 2619–2629

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.11.001&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.11.001
mailto:ejpark04@snu.ac.kr
mailto:uni208@snu.ac.kr
mailto:ad1392@snu.ac.kr
mailto:zoon@snu.ac.kr
mailto:younghaklsi.lee@samsung.com
mailto:haes.park@samsung.com
http://dx.doi.org/10.1016/j.eswa.2013.11.001
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


outliers of a segment while the mean and standard deviation rep-
resent the central tendency and dispersion from the mean value,
respectively. However, for continuous-valued data, where diago-
nally aligned data exist, this assumption may not be appropriate.
Consider a simple situation where values monotonically increase.
The minimum and maximum value in this case would be the first
and last data point of the data, respectively. The mean would be no
more than the average value between the minimum and maxi-
mum, and the standard deviation would not represent the residual
sum of squares but the total sum of squares in terms of linear
regression.

Then what are the conditions of a ‘good’ segmentation and sum-
marization? We propose two conditions for a good segmentation
in this paper: linearity and parsimony. ‘Good segments’ are acquired
based on these criteria, and ‘good summarizations’ are attained by
calculating valid, adequate representative values from each
segment.

Much research has been carried out in various fields to ap-
proach the task of segmentation: Kalman filters in signal process-
ing, change point detection algorithms in machine learning, free
knot spline with knot removal in applied mathematics. However,
a common problem with manufacturing data is that the data vary
in shapes, and none of the shapes is dominant Fig. 2. Hybrid
dynamical systems such as shifting Kalman filters have been intro-
duced in the literature to cover this issue, but are computationally
burdensome in real world situations.

In this paper, a robust segmentation algorithm based on linear-
ity and parsimony and a corresponding summarization framework
are proposed. The segmentation algorithm in particular, assumes
that sensor data either has a discrete or continuous pattern. If
the data is considered discrete, it is segmented piecewise con-
stantly, and if continuous, it is segmented piecewise linearly. In
the summarization phase, representative values are calculated
based on the characteristics of the derived segments. The whole
framework covering segmentation and summarization is aimed
to be as computationally light as possible, in order to be practical
in real world situations.

The remainder of this paper is organized as follows: Section 2
presents the related works of segmentation and summarization.
Section 3 presents a preprocessing method of aggregating data of
many wafers achieved from each sensor. Section 4 addresses the
design of a piecewise linear segmentation framework for sequen-
tial data. Section 5 discusses an approach to effectively summarize
the data with the given segments derived above. In Section 6,

experiments of the given technique is performed on real semicon-
ductor manufacturing data. Finally, a conclusion is stated in
Section 7.

2. Related work

In areas such as signal processing, mathematical statistics, auto-
matic control, communication systems and quality control, data
segmentation has various names such as change point detection
(CPD) and signal segmentation.

In the applied mathematics discipline, free knot spline with
knot removal has been applied for data segmentation. Free knot
spline with knot removal mainly consists of two parts: free knot
spline and knot removal. Among these, the free knot spline part
was introduced by De Boor (1974), De Boor and Rice (1968), and
further developed by scholars such as Jupp (1978) or Schütze
and Schwetlick (1997, 1995).

Free knot splines is a data smoothing algorithm that optimizes
the positions of knots, so that the error is minimized. There are two
important model parameters in this algorithm, namely the number
of knots and the order of spline functions r. In order to automati-
cally optimize the number of knots, knot removal was proposed
by Lyche, Cohen, and Mørken (1985) and Lyche and Mørken
(1987). Therefore, combining the two algorithms of free knot
spline and knot removal, data segmentation is conducted by only
determining one model parameter – the order of spline functions r.

RSSðf ;jFSÞ ¼
X

yi; f ðtiÞð Þ2 þ jFS

Z
ff ðrþ1ÞðpÞg2

dp ð1Þ

Due to its nature in smoothing the data, the free knot spline
with knot removal algorithm gives good segmentation results with
continuous-valued data. However, it fails to find the exact change
points for discrete-valued data, due to the same nature. Moreover,
iterative optimization and knot removal are both time consuming
processes.

A number of change point detection algorithms based on the
Bayesian theory were also proposed. In particular, a change point
detection method which performs Bayesian curve fitting using
Markov chain Monte Carlo (MCMC) was proposed by Fearnhead
and Liu (2007) and Punskaya, Andrieu, Doucet, and Fitzgerald
(2002). While these papers are trained in batches, Adams and
MacKay (2007) has proposed a probability-based online change
point detection method, and Saatçi, Turner, and Rasmussen
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Fig. 1. Two example cases where chamber step based segmentation fails to match actual signal changes. Sensor data values (y-axis) are plotted along time (x-axis), and
dotted lines represent chamber step changes. T1 in (a) is an example where data is segmented though the signals did not change, whereas T2 was not segmented while the
signals change. In (b), chamber steps do not coincide with actual change points.
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