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a b s t r a c t

In this paper, an approach for modeling and analysis of time critical, dynamic and complex systems using
stochastic Petri nets together with fuzzy sets is presented. The presented method consists of two stages.
The first stage is same as the conventional stochastic Petri nets with the difference that the steady-state
probabilities are obtained parametrically in terms of transition firing rates. In the second stage, the tran-
sition firing rates are described by triangular fuzzy numbers and then by applying fuzzy mathematics, the
fuzzy steady-state probabilities are calculated. A numerical example for modeling and analysis of a flex-
ible manufacturing cell is given to show the applicability of proposed method. The importance of the pro-
posed approach is that it can take into consideration both dimensions of uncertainty in system modeling,
stochastic variability and imprecision.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A flexible manufacturing system (FMS) is a discrete-event sys-
tem and contains a set of versatile machines, an automatic trans-
portation system, a decision-making system, multiple concurrent
flows of job processes that make different products, and often ex-
ploits shared resources to reduce the production cost (Jeng, 1997a;
Zuberek & Kubiak, 1994). The layout of a complex FMS is given in
Fig. 1 (http://www.denford.co.uk/). These systems require both
qualitative and quantitative aspects to be considered in modeling
and analysis. Qualitative analysis searches for structural properties
like the absence of deadlocks, the absence of overflows or the pres-
ence of certain mutual exclusions in case of resource sharing.
Quantitative analysis looks for performance properties (e.g.
throughput), responsiveness properties (e.g. average completion
times) or utilization properties (e.g. average queue lengths or uti-
lization rates). Quantitative analysis concerns the evaluation of
the efficiency of the modeled system whereas qualitative analysis
concerns the effectiveness of the modeled system.

There are many methods and tools used for modeling and anal-
ysis of FMSs such as queueing networks, Markov chains, simula-
tion, and Petri nets. Petri nets (PN) introduced by Petri (1962), as
a graphical and mathematical tool, can be used for modeling and
analyzing complex systems which can be characterized as synchro-
nous, parallel, simultaneous, distributed, resource sharing, nonde-
terministic and/or stochastic (Bobbio, 1990; Marsan, Balbo, Conte,

Donatelli, & Franceschinis, 1995; Murata, 1989; Zhou & Venkatesh,
1999). The complex systems of these types exhibit characteristics
which are difficult to describe mathematically using conventional
tools like differential equations and difference equations (Jeng,
1997b; Murata, 1989). On the other hand, Petri nets as a mathe-
matical tool provide obtaining state equations describing system
behavior, finding algebraic results and developing other mathe-
matical models. With respect to other techniques of graphical sys-
tem representation like block diagrams or logical trees, Petri nets
are particularly more suited to represent in a natural way logical
interactions among parts or activities in a system (Bobbio, 1990).
In modeling point of view, Petri net theory allows the construction
of the models amenable both for the effectiveness and efficiency
analysis (DiCesare, Harhalakis, Proth, Silva, & Vernadat, 1993).

Due to the graphical nature, ability to describe static and dy-
namic system characteristics and system uncertainty, and the
presence of mathematical analysis techniques, Petri nets form an
appropriate conceptual infrastructure for modeling and analysis
of FMSs.

Although the concept of time was not included in the original
work by Petri (1962), for many practical applications, the addition
of time is a necessity. Without an explicit notion of time, it is not
possible to conduct temporal performance analysis, i.e., to deter-
mine production rate, resource utilization. In modeling a FMS with
PNs, timing and activity durations for analyzing temporal perfor-
mance and dynamics of the system should be taken into
consideration.

In PNs, time is often associated to transitions. The reason for this
is that transitions represent events in a model and it is more natural
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to consider events to take time rather than time to be related to con-
ditions, that is, places (Bowden, 2000; Gharbi & Ioualalen, 2002;
Murata, 1989; Zhou & Venkatesh, 1999). The time delays in a PN
model can be specified either deterministically or probabilistically.
If the time delays are deterministically given, such a PN model is
called as deterministic timed net and if the delays are probabilisti-
cally specified, the PN model is called stochastic net. Timed PNs
and stochastic PNs are two popular extensions of PNs which are
widely used in the application field of manufacturing systems.

A stochastic PN (SPN) is a Petri net where each transition is
associated with an exponentially distributed random variable that
expresses the delay from the enabling to the firing of the transition.
Due to the memoryless property of the exponential distribution of
firing delays, Molloy (1982) showed that the reachability graph of a
bounded SPN is isomorphic to a finite Markov chain. Queueing net-
works and Markov chains provide flexible, powerful and easy to
use tools for modeling and analysis of complex manufacturing sys-
tems and are widely used (Al-Jaar & Desrochers, 1990). However, it
is difficult to describe the causal relation of uncertain events
explicitly in the complex models using Markov chain and queueing
network models because of their unrealistic mathematical
assumptions (Hatono, Yamagata, & Tamura, 1991). In SPN models,
we can explicitly describe the causal relation of uncertain events
by using places, transitions, and arcs. Therefore, using SPNs, we
can construct the model of a FMS more easily than using the other
models. SPNs combine the modeling power of PNs and the analyt-
ical tractability of Markov processes for the purpose of perfor-
mance analysis (Molloy, 1982).

The limitation of the SPN is that the number of states of the
associated Markov chain grows very fast as the complexity of the
SPN model increases (Marsan, Bobbio, Conte, & Cumani, 1984,
1995). Marsan et al. (1984) introduced the generalized SPNs to re-
duce the complexity of solving a SPN model in which the number
of reachable markings is smaller than that in a topologically iden-
tical SPN. A generalized SPN is basically a SPN with transitions that
are either timed (to describe the execution of time consuming
activities) or immediate (to describe some logical behavior of the
model). Timed transitions behave as in SPNs, whereas the immedi-
ate transitions have an infinite firing rate and fire in zero time.

Petri (1987) presented some criticism related to timed and sto-
chastic PNs about the conceptualization of time and chance. In his
latter study Petri (1996) presented many axioms, among which the
axioms of measurement and control related to time and nets, and
emphasized mainly on uncertainty. These studies turned the atten-
tion on fuzzy set theory and fuzzy logic (Zadeh, 1965, 1973) which
have been applied successfully in modeling and designing many
real world systems in environments of uncertainty and
imprecision.

There are several approaches that combine fuzzy sets and Petri
nets theories, differing not only in the fuzzy tools used but also in
the elements of the nets that are fuzzified. A PN structure is a four
tuple consisting of places, transitions, tokens and arcs, and theoret-
ically each of these can be fuzzified (Srinivasan & Gracanin, 1993).

Analysis and design of complex systems often involve two kinds
of uncertainty: randomness and fuzziness (Hu, Wu, & Shao, 2002).
Randomness refers to describing the behavior of the parameters by
using probability distribution functions. In other words, the ran-
domness models stochastic variability. Fuzziness models measure-
ment imprecision due to linguistic structure or incomplete
information. In modeling a FMS, input and model parameters are
usually in the form of uncertain parameters. The possible sources
of imprecision causing uncertainty in system modeling are system
inputs, system outputs, and imprecise inner operations (Virtanen,
1995). In some cases, the uncertainty arises from both randomness
(stochastic variability) and imprecision (fuzziness) simultaneously.
SPNs in which time is the only random variable and time delay is
described by probability functions well characterize the uncer-
tainty in the system with the measures of variance and probability
distributions. During the analysis, the uncertainty in parameter
values can be hidden in the results. The use of fuzzy sets theory
to be able to compensate this can be considered as an important
alternative.

Although the dominating concept to describe uncertainty in
modeling is stochastic models which are based on probability,
probabilistic models are not suitable to describe all kinds of uncer-
tainty, but only randomness. Especially the imprecision of data
which is for example as a result of the limited precision of measur-
ing is not statistical in nature and cannot be described by using

Fig. 1. The layout of a complex FMS (Denford Co., UK).
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