
Expert Systems With Applications 48 (2016) 9–25

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Enabling graph mining in RDF triplestores using SPARQL for holistic

in-situ graph analysis

Sangkeun Lee a,∗, Sreenivas R. Sukumar a, Seokyong Hong b, Seung-Hwan Lim a

a Computational Sciences and Engineering Division, Oak Ridge National Laboratory, TN, USA
b Department of Computer Science, North Carolina State University, USA

a r t i c l e i n f o

Keywords:

Graph

Mining

Analysis

RDF

SPARQL

Triplestore

Semantic Web

a b s t r a c t

Graph analysis is now considered as a promising technique to discover useful knowledge from data. We posit

that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining

(GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery. As

these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which

covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple

graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existing

graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an ap-

proach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in

RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More

specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL.

The approach allows a wide range of available RDF datasets directly applicable for holistic graph analysis

within a system. For validation of our approach, we evaluate performance of our implementations with nine

real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 in-

stance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimental results

show that our implementation can provide promising and scalable performance for real world graph analysis

in all tested environments. The developed software is publicly available in an open-source project that we

initiated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The growing interests in discovering relationships across dis-

parate datasets in various domains (e.g., social network, life science,

government, healthcare, etc.) have increasingly highlighted graph

analysis as a tool for data-driven discovery. Graph analysis is a gen-

eral term describing the process of unveiling useful associations hid-

den in the data. Major operations in graph analysis fall into two broad

categories: (1) online graph query processing such as online data re-

trieval, aggregation of entities (nodes, edges, paths, and subgraphs)

in a graph, and graph pattern matching; and (2) automatic discovery

of patterns and prediction of graph properties such as counting trian-

gles (Tsourakakis, 2008), calculating degree distribution, finding ec-

centricity (Hage & Harary, 1995), finding connected components, and

computing PageRank/Personalized PageRank (Page, Brin, Motwani, &

∗ Corresponding author. Tel.: +7188773061.

E-mail addresses: lees4@ornl.gov, leesangkeun@gmail.com (S. Lee),

sukumarsr@ornl.gov (S.R. Sukumar), shong3@ncsu.edu (S. Hong), lims1@ornl.gov

(S.-H. Lim).

Winograd, 1999; Tong, Faloutsos, & Pan, 2006). In this paper, the first

category of analysis activities is referred to as Online Graph Analytic

Processing (OLGAP) and the second category as Graph Mining (GM).

Traditional On-Line Analytic Processing (OLAP) (Chaudhuri & Dayal,

1997) performs real-time and online statistical analysis of histori-

cal data using a multi-dimensional cube in traditional data ware-

house environments. OLGAP can be considered as its counter part.

It aims to provide real-time and online data analysis over a graph

data model, instead of a multi-dimensional cube. OLGAP encloses

graph pattern matching as well as statistical analysis. For example,

let us assume that we have a data graph g that was constructed by

integrating datasets from two different hospitals A and B. OLGAP

answers questions like “Who are the patients having the treatment

graph pattern p in the healthcare data graph g?”, where p is usu-

ally defined by a subject-matter-expert based on his or her domain

knowledge. The expert may perform statistical analysis on the re-

trieved graph instances, or he can refine the pattern and repeat the

process.

On the other hand, instead of utilizing user-defined graph queries,

to discover patterns or predict unknown graph properties, GM

http://dx.doi.org/10.1016/j.eswa.2015.11.010

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.11.010&domain=pdf
mailto:lees4@ornl.gov
mailto:leesangkeun@gmail.com
mailto:sukumarsr@ornl.gov
mailto:shong3@ncsu.edu
mailto:lims1@ornl.gov
http://dx.doi.org/10.1016/j.eswa.2015.11.010


10 S. Lee et al. / Expert Systems With Applications 48 (2016) 9–25

Fig. 1. Two aspects of graph analysis - Online Graph Analytic Processing (OLGAP) and Graph Mining (GM).

involves a set of predefined procedures such as degree distribution,

triangle count (Tsourakakis, 2008), node eccentricity (Hage & Harary,

1995), connected components, PageRank/Personalized PageRank (Page

et al., 1999; Tong et al., 2006), etc. One chooses graph mining algo-

rithms based on the mathematical expression of saliency to answer

questions like “Who is likely to be the most influential person in the

social network?” or “Are there communities in the literature citation

network?”. GM is a sub-category of traditional data mining. Fig. 1 il-

lustrates the relationship between the two major categories of graph

analysis.

It is very important to understand that OLGAP and GM comple-

ment each other and typically form a cyclic work-flow in graph analy-

sis. For instance, a user may want to compute the importance of nodes

in a social network using the PageRank algorithm, then they may

want to understand the structural friendship pattern among the users

with high PageRank scores. Thus, supporting both analysis capabili-

ties in a single system, so called the capability of holistic in-situ graph

analysis, is critical for data-driven knowledge discovery. The holis-

tic in-situ graph analysis will allow users not to worry about man-

aging multiple systems, dealing with consistency of datasets staged

in different systems, and data transformation cost caused by trans-

ferring intermediate datasets. However, among a wide range of tech-

nologies for graph analysis, it is not easy to find a system that pro-

vides both OLGAP and GM capabilities. For instance, Graph databases

(e.g., Neo4j (Robinson, Webber, & Eifrem, 2013), DEX (Martínez-Bazan

et al., 2007), Titan1, etc.) and RDF triplestores (e.g., Jena SDB (Schmidt,

Hornung, Küchlin, Lausen, & Pinkel, 2008), Sesame (Broekstra, Kamp-

man, & Van Harmelen, 2002), Virtuoso (Erling & Mikhailov, 2009), etc.

) provide OLGAP capability, but they lack built-in GM capabilities. In

contrast to graph databases, graph processing systems such as Pegasus

(Deelman et al., 2005), Giraph (Avery, 2011), and GraphX (Xin, Gonza-

lez, Franklin, & Stoica, 2013), focus on scaling up graph mining algo-

rithms for large-scale graphs. However, their online pattern matching

capability, which is essential for OLGAP, is very limited, as they do not

provide high-level graph query processing capability.

In this paper, to address such limitations, we aim to enable holistic

in-situ graph analysis, which is to perform both OLGAP and GM within

a single system. Particularly, we take an approach to enabling GM ca-

pabilities in RDF triplestores, which are originally developed to only

provide OLGAP capability. More specifically, we implement represen-

tative graph mining algorithms using the standard query language of

RDF triplestores, called SPARQL.

1 http://thinkaurelius.github.io/titan/.

Our choice is based on the following reasons. First, there is a

number of readily available RDF datasets disseminated by data sci-

entists or organizations. For instance, the Linked Data Open Commu-

nity Project in RDF consists of over 31 billion triples. The open com-

munity effort contains a wide range of information about places,

people, organisms, diseases, genes, medicines, and vast bibliographic

data about books, music, television and movies. Second, thanks to

the standardization, various RDF triplestores (e.g., Jena (Schmidt

et al., 2008), Sesame (Broekstra et al., 2002), RDFSuite(Alexaki,

Christophides, Karvounarakis, Plexousakis, & Tolle, 2001), SPARQL-

Verse (Liu, Le Calvé, Cretton, & Glassey, 2014), etc.) can take the ad-

vantage of our implementations. Note that not only conventional

triplestores but also RDF/SPARQL-based graph processing appliance

such as Urika-GD (Sukumar & Bond, 2013) can achieve the capability

of performing GM. Third, graph datasets that are not in RDF format

can be easily transformed in a straightforward way into RDF datasets,

as RDF naturally represents a graph. We believe that enabling GM ca-

pability in RDF triplestores will bring a huge impact, as it allows a

number of data scientists who have their RDF datasets in various RDF

triplestore to perform GM without requiring additional data transfor-

mation or movement.

Unfortunately, it is not trivial to implement graph mining algo-

rithms using SPARQL. The complexity arises from the fact that most

graph-theoretic algorithms have a linear-algebra formulation and as-

sume adjacency-matrices as the default data model. Matrix and array

structures are not straightforward to realize using the SPARQL query

algebra. One has to redesign algorithms that can handle the triple

representation and algorithms have to be simplified for graph opera-

tions supported by the SPARQL-query algebra. Also, most graph min-

ing techniques are iterative algorithms and SPARQL does not support

iterative query processing.

In our previous workshop paper (Lee, Sukumar, & Lim, 2015b),

we introduced initial concepts and challenges of enabling graph min-

ing using SPARQL in triplestores. We presented three iterative graph

mining algorithms and evaluated their performance on a standalone

machine. As an extension of work, we propose more optimized algo-

rithms along with three additional algorithms in triplestores which

are critical to graph analysis. The proposed algorithms are extensively

evaluated and analyzed. The main contributions of efforts are sum-

marized as follow:

1. To achieve the capability of holistic in-situ graph analysis in RDF

triplestores, we present how to implement graph mining al-

gorithms using SPARQL queries. For further development, we

http://thinkaurelius.github.io/titan/


Download English Version:

https://daneshyari.com/en/article/384085

Download Persian Version:

https://daneshyari.com/article/384085

Daneshyari.com

https://daneshyari.com/en/article/384085
https://daneshyari.com/article/384085
https://daneshyari.com

