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a b s t r a c t

Manifold learning methods for unsupervised nonlinear dimensionality reduction have proven effective in
the visualization of high dimensional data sets. When dealing with classification tasks, supervised exten-
sions of manifold learning techniques, in which class labels are used to improve the embedding of the
training points, require an appropriate method for out-of-sample mapping.

In this paper we propose multi-output kernel ridge regression (KRR) for out-of-sample mapping in
supervised manifold learning, in place of general regression neural networks (GRNN) that have been
adopted by previous studies on the subject. Specifically, we consider a supervised agglomerative variant
of Isomap and compare the performance of classification methods when the out-of-sample embedding is
based on KRR and GRNN, respectively. Extensive computational experiments, using support vector
machines and k-nearest neighbors as base classifiers, provide statistical evidence that out-of-sample
mapping based on KRR consistently dominates its GRNN counterpart, and that supervised agglomerative
Isomap with KRR achieves a higher accuracy than direct classification methods on most data sets.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Dimensionality reduction techniques are aimed at discovering a
low-dimensional structure hidden in the original data. This can be
useful as a preprocessing step for data visualization, clustering,
classification or regression, to reduce training time and achieve
better results particularly when dealing with high dimensional
data sets.

Beside linear methods, such as principal component analysis
(PCA) (Jolliffe, 1986) and metric multidimensional scaling (MDS)
(Cox & Cox, 1994), nonlinear dimensionality reduction techniques
have been more recently proposed to uncover a lower dimensional
manifold along which data lie. Manifold learning methods include,
among others, isometric feature mapping (Isomap) (Tenenbaum,
de Silva, & Langford, 2000), locally linear embedding (LLE) (Roweis
& Saul, 2000) and Laplacian eigenmaps (Belkin & Niyogi, 2003),
which are based on a common framework that first determines
the neighbors of each point in the input space and then computes
the spectral embedding using the eigenvectors of an appropriate
weight matrix defined over the input data.

Unlike linear PCA and MDS, most manifold learning methods do
not derive an explicit mapping function for embedding the data
into the reduced space. Therefore, when new data points need to
be projected into the lower dimensional space, a fast and accurate
method for out-of-sample mapping has to be devised. This

happens in particular for classification problems, where supervised
extensions of manifold learning methods are considered in
which the class labels are used to improve the embedding of the
training points (Geng, Zhan, & Zhou, 2005; Vlachos, Domeniconi,
Gunopulos, Kollios, & Koudas, 2002). It is apparent that the
effectiveness of the method adopted for out-of-sample projection
is critical for achieving a high classification accuracy.

To accomplish the out-of-sample mapping in supervised mani-
fold learning, we propose to use multi-output kernel ridge regres-
sion (KRR) in place of general regression neural networks (GRNN)
that have been adopted by previous studies on the subject (Geng
et al., 2005; Gu, Xu, & Ye, 2007; Ribeiro et al., 2009; Vlachos
et al., 2002). GRNN is a universal technique for learning a map be-
tween vector spaces, based on a normalized radial basis function
network in which a hidden unit is introduced for every training
point (Specht, 1991). GRNN has the advantage of being faster to
train than other neural networks, since the weights are calculated
in a single step instead of being computed by a backpropagation
descent algorithm.

In turn, ridge regression is an alternative method for learning
functions, based on a regularized extension of least squared tech-
niques (Hastie, Tibshirani, & Friedman, 2009). Although it is usually
formulated for learning real-valued maps, it can be modified to
deal with vector-valued regression (Cortes, Mohri, & Weston,
2005). Furthermore, nonlinear maps can be approximated by
means of kernel ridge regression, an extension of linear ridge
regression based on kernel functions. Likewise GRNN, KRR offers
the advantage of being fast to evaluate, requiring only a single
matrix inversion which depends on the number of points but is
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independent of the number of attributes in the input space. The
rationale behind resorting to KRR for out-of-sample embedding is
that it can achieve an ideal trade-off between bias and variance
of the estimates by means of the regularization term, thus resulting
in a more precise approximation of the mapping aimed at out-of-
sample data projection.

In this paper, we consider a supervised extension of Isomap for
dimensionality reduction, in which the distances between points
are modified according to their labels as in Geng et al. (2005).
Furthermore, to obtain a connected neighborhood graph without
increasing too much the number of neighbors, we introduce a
variant of Isomap based on a hierarchical agglomeration of the
components. The performances of KRR for out-of-sample mapping
are finally evaluated in terms of classification accuracy. To this aim,
the projected training data are fed into a generic classifier whose
accuracy is estimated on the embedding of the out-of-sample test
set.

Extensive computational experiments have been performed on
a collection of real word data sets, using support vector machines
(Cristianini & Shawe-Taylor, 2000; Vapnik, 1995) and k-nearest
neighbors (Duda & Hart, 1973) as base classifiers. Our tests provide
statistical evidence that out-of-sample mapping based on KRR
consistently dominates its GRNN counterpart, and that supervised
agglomerative Isomap with KRR achieves a higher accuracy than
direct classification methods for most data sets.

2. Unsupervised agglomerative Isomap

Given a set of data Sm ¼ fxi; i 2 M ¼ f1;2; . . . ;mgg � Rn, they
may happen to be arranged along a manifold whose intrinsic
dimension d is much lower than n. The aim of Isomap is to find
an embedding of the given data set Sm into a lower dimensional
space Rd, in such a way that the geodesic distance between a pair
of points in the input space should be as close as possible to the
Euclidean distance between their projections into the lower
dimensional space. Since the manifold along which the points are
supposed to lie is generally unknown in advance, it is not possible
to compute the geodesic distances in an exact way so that they
have to be evaluated approximately. The geodesic distance be-
tween each pair of points is estimated by the shortest path
computed between the corresponding vertices in an appropriate
neighborhood graph.

According to the original Isomap algorithm (Tenenbaum
et al., 2000), two vertices are connected by an edge if and only
if one of them is among the h nearest neighbors of the other,
where h is a parameter to be specified. This leads to a weighted
undirected neighborhood graph in which the length qij of an
edge (i, j) equals the Euclidean distance eij between its end-
points. The Isomap algorithm further requires the neighborhood
graph to be connected, in order to compute the shortest path
between any pair of vertices. Consequently, the parameter h
has to be chosen large enough to guarantee connectedness of
the neighborhood graph. Unfortunately, large values of h may
induce inappropriate connections between different folds of
the manifold, resulting in an inaccurate embedding of the points
in Sm.

To avoid this drawback, we propose a two stage variant of
Isomap: first, the neighborhood graph is built according to the
original scheme; if this results in a disconnected graph, an iterative
procedure is then applied that merges the two closest connected
components as in a hierarchical agglomerative method for
clustering.

The unsupervised agglomerative Isomap algorithm takes as
input the dissimilarity matrix Q, together with the parameters d
and h, and can be summarized as follows:

2.1. Procedure A-Isomap (Q , d,h)

1. Build the neighborhood graph by connecting each point to its h
nearest neighbors.

2. If the neighborhood graph is not connected, iteratively agglom-
erate two components for which the interdistance is minimum,
by adding an arc between the closest pair of points belonging to
distinct components.

3. Approximate the geodesic distances with the shortest paths
computed between every pair of vertices, obtaining the matrix
G = [gij] of the corresponding lengths.

4. Find the embedding zi; i 2M, of the points into the lower
dimensional space Rd using classical multidimensional scaling.
To this aim, first compute the matrix S = �BKB/2, where
K ¼ ½g2

ij� is the matrix of the squared shortest path lengths and
B is a centering matrix whose generic element is defined as
bij = dij � 1/m, with dij denoting the Kronecker’s delta. Then take
the first d eigenvalues {k1,k2, . . . ,kd} of the matrix S in
non-increasing order and the corresponding eigenvectors
{v1,v2, . . . ,vd}; the pth component of the ith point in Rd is
defined as zi;p ¼

ffiffiffiffiffi
kp

p
v i;p; p ¼ 1;2; . . . ; d.

The dimension d of the manifold can be estimated by identify-
ing the point at which the curve of residual variances versus the
dimensionality of the embedding space flattens, as suggested in
Tenenbaum et al. (2000).

3. Supervised agglomerative Isomap

A classification problem consists of determining a function
which optimally describes the relationship between a set of points
Sm ¼ fxi; i 2 Mg � Rn and their associated categorical labels
yi 2 {1,2, . . . ,D}.

When dealing with classification, unsupervised dimensionality
reduction methods can be applied as a preprocessing step to the
entire data set. As an alternative, supervised extensions of mani-
fold learning can be devised by using class labels, so to achieve a
projection of training data which is more suitable for the subse-
quent classification phase. In this case, however, an out-of-sample
problem has to be solved in order to evaluate the accuracy of the
classifier on a test set, whose class labels are kept hidden. This
means that a method to project the test points into the embedding
space has to be developed. This has been usually done on an induc-
tive basis, by means of general regression neural networks. Here
we propose an out-of-sample embedding method based on
multi-output kernel ridge regression.

In particular, a supervised variant of Isomap can be obtained by
using the training labels to increase inter-class dissimilarity while
decreasing intra-class dissimilarity. More specifically, before
applying algorithm A-Isomap the distance qij between the pair of
points (i, j) is modified according to their labels, as suggested in
(Geng et al., 2005):

qij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e

�e2
ij

b

q
if yi ¼ yj;ffiffiffiffiffiffi

e
e2
ij
b

q
� a if yi – yj:

8>><
>>:

ð1Þ

The parameter b is aimed at preventing an uncontrolled growth of
qij when the Euclidean distance eij is large, and it is usually set equal
to the average distance between all pairs of points. The parameter a
is instead used to counteract overfitting during classification, by
smoothing the gap between inter-class and intra-class dissimilarity.

The supervised agglomerative Isomap algorithm can be summa-
rized as follows, where Sm denotes the training set with the asso-
ciated vector of labels ym, and T r is the out-of-sample set. In turn,
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