
New VNS heuristic for total flowtime flowshop scheduling problem

Wagner Emanoel Costa a,⇑, Marco César Goldbarg b, Elizabeth G. Goldbarg b

a Programa de Pós-Graduação em Sistemas e Computação, UFRN/CCET/PPGSC – Campus, Universitário Lagoa Nova, Natal, RN, Brazil
b Departamento de Informática e Matemática Aplicada, UFRN/CCET/DIMAp – Campus, Universitário Lagoa Nova, Natal, RN, Brazil

a r t i c l e i n f o

Keywords:
Flowshop
Scheduling
Total flowtime
Heuristics
VNS

a b s t r a c t

This paper presents a new Variable Neighborhood Search (VNS) approach to the permutational flowshop
scheduling with total flowtime criterion, which produced 29 novel solutions for benchmark instances of
the investigated problem. Although many hybrid approaches that use VNS do exist in the problems
literature, no experimental study was made examining distinct VNS alternatives or their calibration. In this
study six different ways to combine the two most used neighborhoods in the literature of the problem,
named job interchange and job insert, are examined. Computational experiments were carried on instances
of a known dataset and the results indicate that one of the six tested VNS methods, named VNS4, is quite
effective. It was compared to a state-of-the-art evolutionary approach and statistical tests applied on the
computational results indicate that VNS4 outperforms its competitor on most benchmark instances.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the permutational flowshop scheduling problem, there is a
set of jobs J = {1,2, . . . ,n}. Each of n jobs has to be processed by a
set of m machines M = {1,2, . . . ,m}, sequentially from the first ma-
chine to the last, in the same order. Each job j requires tjr units of
time on machine r. Each machine can process at most one job at
any given time, and it cannot be interrupted. Each job is available
at time zero and can be processed by at most one machine in any
given time. Here the focus is to find the permutation of jobs
P = {p1,p2, . . . ,pn}, such that the total completion time of jobs,
named total flowtime (TFT), is minimized. Eq. (1) expresses math-
ematically the concept of total flowtime of a given permutation, P,
where C(pi,m) stands for the completion time of job in position i of
P, pi. According to Rajendran and Ziegler (1997), TFT is an impor-
tant objective in many real life manufacturing systems, for it min-
imizes holding costs.

TFTðPÞ ¼
Xn

i¼1

Cðpi;mÞ ð1Þ

The values of C(pi,m) can be evaluated using Eqs. (2)–(5). Eqs.
(2) and (3) define the completion time relative to the first job in
permutation P, p1. Eq. (2) defines the completion time of the first
job, p1, on the first machine as time required to complete its pro-
cessing, t1,1. It provides a base case for (3) which defines the com-

pletion time of p1 on machine r, 1 < r 6m, as the completion time
of p1 on the previous machine, C(p1,r � 1), plus the processing
time of job p1 on machine r, t1,r.

Cðp1;1Þ ¼ tp1 ;1 ð2Þ
Cðp1; rÞ ¼ Cðp1; r � 1Þ þ tp1 ;r 8r 2 f2; . . . ;mg ð3Þ

Eqs. (4) and (5) evaluate the completion times for each job pi,
1 < i 6 n. When r = 1, C(pi,1) is defined as the sum of the completion
time of the previous job on the first machine, C(pi�1,1), with the
processing time of pi, ti,1. For all remaining machines, 1 < r 6m,
completion time of job pi, C(pi, r), 1 < i 6 n, depends on two factors.
First, the time on which job pi concludes its processing on the pre-
vious machine, r � 1, and therefore becomes available to be pro-
cessed on machine r. Second, machine r can process job pi only, if
r has finished processing the previous job, pi�1. If machine r has
not concluded the previous job, pi�1, then the processing of job pi

will start after machine r concludes job pi�1. Eq. (5) expresses both
factors and defines the completion time, C(pi,r), 1 < i 6 n and
1 < r 6m, as the sum of processing time ti,r, with the greatest value
between C(pi,r � 1) and C(pi�1,r).

Cðpi;1Þ ¼ Cðpi�1;1Þ þ tpi ;1 8i 2 f2; . . . ;ng ð4Þ

Cðpi; rÞ ¼ maxfCðpi; r � 1Þ;Cðpi�1; rÞg þ tpi ;r 8i

2 f2; . . . ;ng 8r 2 f2; . . . ;mg ð5Þ

Due to the fact that the decision problem associated with TFT is NP-
Complete in the strong sense when m P 2 (Graham, Lawler, Lenstra,
& Kan, 1979), many heuristic approaches have been proposed to
this problem such as constructive methods (Framinan, Leisten, &
Ruiz-Usano, 2002; Liu & Reeves, 2001; Nagano & Moccellin, 2007;

0957-4174/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2012.01.152

⇑ Corresponding author. Tel.: +55 84 3215 3814.
E-mail addresses: wemano@gmail.com (W.E. Costa), gold@dimap.ufrn.br (M.C.

Goldbarg), beth@dimap.ufrn.br (E.G. Goldbarg).

Expert Systems with Applications 39 (2012) 8149–8161

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2012.01.152
mailto:wemano@gmail.com
mailto:gold@dimap.ufrn.br
mailto:beth@dimap.ufrn.br
http://dx.doi.org/10.1016/j.eswa.2012.01.152
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Rajendran, 1993; Rajendran & Ziegler, 1997), local search methods
(Dong, Huang, & Chen, 2009; Liu & Reeves, 2001) genetic algorithms
(Nagano, Ruiz, & Lorena, 2008; Tseng & Lin, 2009; Xu, Xu, & Gu,
2011; Zhang, Li, & Wang, 2009a), ant colonies (Rajendran & Ziegler,
2004; Zhang, Li, Wang, & Zhu, 2009b), particle swarm optimization
(Jarboui, Ibrahim, Siarry, & Rebai, 2008; Tasgetiren, Liang, Sevkli, &
Gencyilmaz, 2007, 2007), bee colony optimization (Tasgetiren, Pan,
Suganthan, & Chen, 2010), hybrid discrete differential evolutionary
algorithm (Tasgetiren et al., 2010), VNS and EDA-VNS (Jarboui,
Eddaly, & Siarry, 2009).

From the cited approaches, the works of Zhang et al. (2009a),
Tseng and Lin (2009), Jarboui et al. (2009), Tasgetiren et al.
(2010) and Xu et al. (2011) are the ones which produced the cur-
rent state-of-art results.

A significant number among the state-of-art approaches com-
bine two neighborhoods, named job insert and job interchange,
in an internal VND procedure. The two neighborhoods are com-
bined in the same order in the works of Zhang et al. (2009a), Tas-
getiren et al. (2010) and Xu et al. (2011). Within flowshop’s
literature, the only work to test distinct ways to combine these
neighborhoods is Pan, Tasgetiren, and Liang (2008), where a hybrid
heuristic, particle swarm with VND, is devised for the no-wait
flowshop problem. The experiments of Pan et al. (2008), test the
hybridization of a PSO algorithm with two VND approaches, one
starting with job insert and the other starting with job interchange.
Both of them create all neighboring solutions before deciding to
which solution to migrate. The results point out that the use of
job interchange as the initial neighborhood provides the best per-
formance on the tested instances of the no-wait flowshop. So far no
study has been reported, for classical flowshop with total flowtime
criterion, examining distinct combinations of neighborhoods.

The present study examines six distinct combinations of the
two most common neighborhoods structures for the permuta-
tional flowshop scheduling using total flowtime criterion.
Although, in the problem’s literature, the use of VNS is common,
the results of the experiments performed on instances of the suite
created by Taillard (1993) suggested that, the most profitable com-
bination of job interchange and job insert local search, is distinct
from the combination of such local searches in literature. Consider-
ing that this new combination is a novel VNS for flowshop TFT, two
questions arise: How does the new VNS perform when it is com-
pared to state-of-the-art methods? Can current state-of-the-art
methods benefit from using the new combination?

To address those questions, the novel VNS, labeled VNS4 is com-
pared with two other approaches, one named AGA and the other
named V4AGA. AGA is a genetic algorithm hybridized with VNS
(Xu et al., 2011), which was claimed by its authors as superior algo-
rithm when compared to other state-of-the-art methods. V4AGA is
a novel hybrid approach proposed here, that replaces the VNS used
in AGA by the one developed in this study. This experiment
resulted in 34 novel solutions, 29 of then generated by VNS4.

The remaining of this paper is organized as follows. Section 2
reports a brief review of literature. Section 3 describes the VNS ap-
proaches as well as the describes the job insert and job interchange
neighborhoods, the different ways to combine them and parame-
ters tested in the experiments. Section 4 reports the experiments
to determine which combination of neighborhoods performs best,
using a subset of instances from Taillard (1993). Section 5 de-
scribes the computational experiments and results obtained by
applying VNS4, AGA and V4AGA over all 120 instances of the data
set. Section 6 presents some conclusions.

2. Literature review

This section reviews some methods proposed for PFSP with TFT
criterion. Because the PFSP literature is vast this review is limited to

only some constructive methods in literature, and metaheuristic ap-
proaches that constitute the current state-of-the-art of the problem.

The method of Rajendran and Ziegler (1997) evaluates the lower
bound for each job available for assignment, and creates, m different
solutions by changing as many machines as were considered in eval-
uating the lower bound. For instance, the first solution was con-
structed by sorting the jobs, in the non-decreasing order, by the
weighted sum of the processing times of all m machines. The
weights are defined in such a way that one unit of processing time
of a machine, r = j, has greater impact than one unit of time of subse-
quent machines, r > j. Eq. (6) shows the formula for the unweighted
total flowtime. The equation for the weighted total flowtime is
slightly different, but the weighted case is not the topic of discussion
in this work. The processing time of the first machine is deleted, and
the jobs re-sorted considering only the processing times of the m � 1
machines. This procedure is repeated, by deleting data from one ma-
chine at each iteration until the last solution is created, when only
the processing time of the last machine is taken into account. The
best solution among the m created ones is then submitted to a local
search procedure using job insert neighborhood.

Xm

r¼j

ðm� r þ 1ÞTri j 2 f1; . . . ;mg ð6Þ

The method H(1) (Liu & Reeves, 2001) weights down two crite-
ria: weighted sum of machine idle time (IT) and artificial flowtime
(AT). The idle time criterion for selecting job i when k jobs were al-
ready selected (ITik), is defined by Eq. (7), where wrk is calculated
with Eq. (8). When the difference between C(i,r � 1) and C(pk,r)
is positive, means machine r is idle. The weights, as defined in
Eq. (8), stress that idle times on early machines are undesirable,
for they delay the remaining jobs. Such stress is stronger if there
are many unscheduled jobs (small value of k), but it becomes weak
when the number k of scheduled jobs increases.

ITik ¼
Xm

r¼2

wrkmaxfCði; r � 1Þ � Cðpk; rÞ;0g ð7Þ

wrk ¼
m

r þ kðm� rÞ=n� 2
ð8Þ

The artificial flowtime (ATik) of a candidate job i after k jobs
were schedule refers to the TFT value obtained after including
unscheduled job i, plus the time of an artificial job placed at the
end of the job sequence. The processing time of the artificial job
on each machine is equal to the average processing time of all
unscheduled jobs, excluding job i, on the corresponding machine.

Both criteria, ITik and ATik are combined according to Eq. (9).

fik ¼ ðn� k� 2ÞITik þ ATik ð9Þ

Also, Liu and Reeves (2001) propose a class of constructive heu-
ristics named H(x), where x is an integer, 1 6 x 6 n. Each variant
differs in the number of solutions it produces which is given by
x. While H(1) produces only one solution, H(2) produces two solu-
tions and so on. These methods create new solutions by changing
the initial job. Once the greedy criterion used in these heuristics
is adaptive, different initial jobs produce different solutions. H(1)
uses the job with the best value according to the greedy criterion
as the initial job. H(2) creates two solutions using each of the
two best evaluated jobs as the initial job. Thus, the first solution
generated by H(2) is exactly the same as the one generated by
H(1). The second solution uses the second best job as the initial
job. A special case is H(n/10) which uses the same principle, pro-
ducing n/10 solutions with the best n/10 initial jobs. The work of
Liu and Reeves (2001) also proposes the use of job interchange lo-
cal search to further improve the greedy solution obtained.

Framinan et al. (2002) define a queue based on the sum of the
processing times of each job. The job at the top of the queue is

8150 W.E. Costa et al. / Expert Systems with Applications 39 (2012) 8149–8161



Download English Version:

https://daneshyari.com/en/article/384152

Download Persian Version:

https://daneshyari.com/article/384152

Daneshyari.com

https://daneshyari.com/en/article/384152
https://daneshyari.com/article/384152
https://daneshyari.com

