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a b s t r a c t

The global market has become increasingly dynamic, unpredictable and customer-driven. This has led to
rising rates of new product introduction and turbulent demand patterns across product mixes. As a result,
manufacturing enterprises were facing mounting challenges to be agile and responsive to cope with mar-
ket changes, so as to achieve the competitiveness of producing and delivering products to the market
timely and cost-effectively. This paper introduces a currency-based iterative agent bidding mechanism
to effectively and cost-efficiently integrate the activities associated with production planning and control,
so as to achieve an optimised process plan and schedule. The aim is to enhance the agility of manufac-
turing systems to accommodate dynamic changes in the market and production. The iterative bidding
mechanism is executed based on currency-like metrics; each operation to be performed is assigned with
a virtual currency value and agents bid for the operation if they make a virtual profit based on this value.
These currency values are optimised iteratively and so does the bidding process based on new sets of val-
ues. This is aimed at obtaining better and better production plans, leading to near-optimality. A genetic
algorithm is proposed to optimise the currency values at each iteration. In this paper, the implementation
of the mechanism and the test case simulation results are also discussed.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Conventionally, the competitive advantage of manufacturing
enterprises was attained by increasing the scale of manufacturing
and reducing costs (i.e. price competitiveness). In the
seventies and eighties, quality and other issues such as delivery per-
formance and customer choice took higher priorities, leading to a
drive for improved product quality and reduced inventory levels.
Through the 1990s toward the present day, the world market has
become increasingly global, dynamic, unpredictable and customer
driven. This has led to increasing rates of new product introduction
(i.e. decreasing product life cycle) and turbulent demand patterns
across product mixes. As a result, customer satisfaction has become
harder to achieve and manufacturing enterprises have to be agile
and responsive to cope with market changes in order to compete
with their business rivals in the competitive market. The competi-
tive advantage is now largely dependent upon the rapid responsive-
ness to cope with dynamic changes of product mixes and demand
patterns, as well as the opportunities in the market (i.e. market
shifts). In addition, unforeseen situations in the manufacturing shop

floor, such as urgent pre-emptive jobs or machine breakdowns, may
also need to be efficiently addressed simultaneously in order to
enhance overall responsiveness. This has a profound implication
to the strategies used to control the manufacturing systems.

Conventional control strategies for manufacturing systems
were not designed to maximise system responsiveness. At the time
when they were developed, costs, lead times, and inventory levels
were more important issues. The strategies were developed to
reflect the weighting of these factors. As responsiveness becomes
a major concern, manufacturing systems that are based upon these
strategies are struggling to keep pace with dynamic changes in the
market. In order to compete with business rivals and maintain a
lead within its respective market, the enterprise must adopt new
manufacturing control strategies that are capable of not only
improving product quality and increasing productivity and produc-
tion efficiency, but most importantly, assisting the enterprise to
achieve the characteristics of agility, reconfigurability, restructura-
bility, reusability and scalability, so as to respond rapidly to the
changes in product distribution caused by market shifts. Moreover,
these strategies must also be able to support the enterprise in pur-
suing high flexibility and adaptive capability to cope with internal
turbulences such as machine failures.

In order to achieve the substantial agility and responsiveness
required, from an operational perspective, process planning and
production scheduling must be dynamically and efficiently
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integrated. This integration will enhance the responsiveness, flex-
ibility and adaptability of manufacturing systems toward changes
and minimise manufacturing problems such as machine unavail-
ability due to overloading (making the process plans infeasible),
extensive bottlenecks, poor cost-efficiency, etc.

This paper introduces a currency-based iterative agent bidding
mechanism used as an agent coordination mechanism in a multi-
agent system (MAS) to effectively and cost-efficiently integrate
production planning and control activities. The mechanism enables
process planning options and production scheduling options to be
evaluated and optimised simultaneously, so as to generate opti-
mised process plans and schedules in response to dynamic changes
in the market and production to support enterprises in achieving
manufacturing agility. The iterative bidding mechanism is carried
out using currency-like metrics; each interrelated operation to be
performed is assigned with a virtual currency value and agents
bid for the operation based on this value. These values are opti-
mised iteratively and so does the bidding process based on new
sets of values generated at each iteration. This is aimed at obtain-
ing better and better production plans, leading to near-optimality.
A genetic algorithm (GA) is proposed to optimise the currency val-
ues at each iteration. The proposed MAS also provides a platform
where the possible reconfiguration of manufacturing systems can
be assessed and the utilisation of manufacturing resources can also
be optimised.

This paper is organised as follows. Section 2 provides a litera-
ture review of the approaches to integrating process planning
and production scheduling. Following that, the generic problem
to be solved in relation to process planning and production sched-
uling is defined in Section 3. Section 4 discusses the concept of
MAS. In Section 5, the currency-based iterative agent bidding
mechanism is introduced and the operational flow of the mecha-
nism is also discussed (Section 6). Section 7 introduces the GA pro-
posed to optimise the virtual currency values in order to achieve
near-optimality. The implementation of the MAS with a test case
and its simulation results will be discussed in Section 8. In addi-
tion, the comparison between the MAS and three non-agent sys-
tems are also provided in this section. Finally, Section 9 provides
a conclusion of this paper.

2. Literature review

In the literature, there have been extensive studies of the ap-
proaches integrating process planning and production scheduling,
namely non-linear process planning, flexible process planning,
closed-loop process planning, dynamic process planning, alterna-
tive process planning, and just-in-time process planning (Huang,
Mei, & Zhang, 1993; Kempenaers, Pinte, Detend, & Kruth, 1996;
Kim, Chiotellis, & Seliger, 2009; Li, Shao, Gao, & Qian, 2010; Mei
& Khoshnevis, 1993; Saygin & Kilic, 1999; Srihari & Emerson,
1990; Usher & Fernandes, 1996a; Wang, Feng, & Cai, 2003). These
approaches can be broadly classified into three categories (Larsen
& Alting, 1990): non-linear process planning (NLPP), closed-loop
process planning (CLPP), and distributed process planning (DTPP).

NLPP entails a planning system based on a static shop floor sit-
uation, which generates not only one fixed plan but a set of possi-
ble alternative plans for each part/product prior to actual
production on the shop floor. All these possible plans are ranked
according to process planning criteria and are stored in a process
planning database. The first priority plan is always used when
the job is required. However, the scheduling function makes the fi-
nal decision. If the first priority plan is not suitable for the current
status of the shop floor, the lower priority plan will be provided to
the scheduling. One of the typical examples of such system is FLEX-
PLAN (Tonshoff, Beckendorff, & Anders, 1989), which uses reactive
re-planning strategies to allow fast reaction when unexpected

events occur in the shop floor during the execution of a schedule.
In this approach, process planning is carried out prior to schedul-
ing. Some researchers proposed the idea of having a two-stage ap-
proach, attempting to improve NLPP. At the first stage, all possible
alternative process plans that do not take into account of opera-
tional status of the shop floor resources are generated. The second
stage is dynamic process planning where the generated plans are
retrieved and planning is completed taking into consideration the
availability of the shop floor resources and the objectives or rules
specified by the scheduler. The result of this two-stage approach
is a set of ranked near-optimum alternative plans and schedules.
The systems applying such an approach are PARIS (Usher & Fernan-
des, 1996a), DYNACAPP (Ssemakula & Wesley, 1994), and THCAPP-
G (Wang, Li, Liu, & Tian, 1995).

Although NLPP offers flexibility to the scheduling department
with a list of alternative process plans, but there is only a single
directional information flow (i.e. from the process planning depart-
ment to the scheduling department). Process planning does not
really consider which of the alternatives are of interest for sched-
uling; an arbitrary set is generated based on the experience of
the process planner. Furthermore, scheduling only uses the alter-
natives that are available. The setup of an information feedback
loop could provide the process planning department with detailed
information of the shop floor situation as well as requirements
from scheduling department, making process planning works more
efficiently. No further effort would be spent on investigating alter-
natives that are of no use. Moreover, the risk of overlooking impor-
tant aspects is also reduced. CLPP is the approach that would
achieve the above issues.

CLPP generates plans for jobs in real time based on the feedback
from the shop floor with respect to the status of the resources at
that time. Production scheduling notifies process planning what
machines are available on the shop floor for the coming job so that
every plan is feasible with respect to the current availability of pro-
duction facilities. Real time status has become a crucial issue for
CLPP and therefore CLPP is also referred to as real time process
planning or dynamic process planning. Khoshnevis and Chen
(1989) developed a heuristic algorithm based on CLPP to facilitate
the integration of process planning and production scheduling to
overcome the drawbacks of NLPP. In the algorithm, a dynamic list
of available machines and a list of features that can be processed
are maintained for each part. When a match is found between
the two lists, the part will be assigned to that machine. However,
the algorithm has neglected one issue in relation to the allocation
of producing the features to machines. For instance, the algorithm
may have allocated a feature to a less desirable machine at a given
instant, whereas had it waited for a short while, a more desirable
machine might have become available. The authors then intro-
duced the concept of time window into their improved algorithm
to deal with this problem (Khoshnevis & Chen, 1990). Although
the improved algorithm can yield better results, the computational
complexity is increased. Another drawback of their approach is
that because the process plans are generated in real time, if a fea-
sible process for a given feature of a part is not found in the shop
floor, the algorithm will fail.

There is another approach to perform both the process planning
and production scheduling simultaneously in a distributed man-
ner, starting from a global level (i.e. pre-planning) and ending at
a detailed level (final planning), namely DTPP approach. DTPP per-
forms process planning and production scheduling activities in
parallel and in two phases. The first phase is pre-planning. In this
phase, process planning function analyses the jobs/operations to
be carried out based on product data. The features and feature rela-
tionships are recognised, and the corresponding manufacturing
processes are determined. The required machine capabilities are
also estimated. The second phase is final planning, which matches
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