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a b s t r a c t

Automatic vehicle-following on traffic safety has been an active area of research. This paper is concerned
with the adaptive intelligent backstepping longitudinal control (AIBLC) system for the vehicle-following
control of a platoon of automated vehicles. In the proposed control system, an adaptive output recurrent
cerebellar model articulation controller (ORCMAC) is used to mimic an ideal backstepping control and a
robust controller is designed to attenuate the effects caused by lumped uncertainty term (such as
unmodeled dynamics, external disturbances and approximate errors), so that the H1 tracking perfor-
mance can be achieved. Moreover, the Taylor linearization technique is employed to derive the linearized
model of the ORCMAC. The adaptation laws of the AIBLC system are derived on the basis of the Lyapunov
stability analysis and H1 control theory so that the stability of the closed-loop system can be guaranteed.
Finally, the simulation results denominate that the proposed AIBLC system can achieve favorable tracking
performance for a safe vehicle-following control.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Transportation technology is one of the most significant areas
on the human life. During manual driving, most human drivers of-
ten use information about the speed and position of the leading
and following vehicles in order to adjust the position and speed
of their vehicles. Since many of today’s automobile accidents are
caused by human error, automating the driving process may actu-
ally increase the safety of the highway. Therefore, the automatic
vehicle-following control objective is to maintain a desired safety
space from its leading vehicle as well as driving comfort. Recently
much effort has been spent on various control laws for a platoon of
vehicles (Caudill & Garrard, 1997; Fujioka & Suzuki, 1994; Lee &
Kim, 2002; No, Chong, & Roh, 2001; Sheikholeslam & Desoer,
1992; Spooner & Passino, 1996; Swaroop, Hedrick, & Choi, 2001;
Zhang, Kosmatopoulos, Ioannou, & Chien, 1999). In Zhang et al.
(1999), an autonomous intelligent cruise control law is proposed
that uses relative speed and spacing measurements from both
the vehicle in front and vehicle behind. The controller guarantees
vehicle stability as well as platoon stability for both time headway
and space headway policies without using preview information
about the platoon leader. Spooner and Passino (1996) presented
an adaptive control for vehicle-following control system. They
assume that the nominal model of the vehicle system is known.
The control system consists of a main controller and an adaptive

fuzzy controller. The known main controller reveals a basic stabi-
lizing controller to stabilize the system and the adaptive fuzzy
controller presents a compensating controller to compensate for
the difference between an ideal controller and main controller.
Sheikholeslam and Desoer (1992) proposed longitudinal control-
lers using exact linearization methods to linearize and normalize
the input–output behavior of each vehicle in the platoon. Fujioka
and Suzuki (1994) used sliding mode control schemes as well as
feedback linearization techniques based on nonlinear vehicle
models. However, these model based approaches have some draw-
backs. The fact that different kinds of vehicles may require differ-
ent model structures and parameters becomes a heavy burden to
the designer. Moreover the performance of the platoon can be
significantly degraded due to model mismatches, parametric
uncertainties or disturbances.

Recently, powerful approximation capabilities of neural net-
works (NNs) for identification and control of dynamic systems
have motivated intensive research for their applications (Hung &
Chung, 2007; Ku & Lee, 1995; Kuschewski, Hui, & Zak, 1993; Lin
& Hsu, 2002, 2004; Lin, Wai, Chou, & Hsu, 2002). According to
the structure, the NNs can be mainly classified as feedforward neu-
ral networks (FNNs) (Hung & Chung, 2007; Kuschewski et al.,
1993; Lin & Hsu, 2002) and recurrent neural networks (RNNs)
(Ku & Lee, 1995; Lin & Hsu, 2004; Lin et al., 2002). As known, the
FNN is a static mapping. Without the aid of tapped delays, the
FNNs are unable to represent a dynamic mapping. For the RNNs,
of particular interest is their ability to deal with time varying input
or output through their own natural temporal operation (Ku & Lee,
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1995). The RNN is a dynamic mapping and demonstrates good con-
trol performance in the presence of unmodelled dynamics (Lin &
Hsu, 2004; Lin et al., 2002). However, no matter for the FNNs or
RNNs, the learning is slow since all the weights are updated during
each learning cycle. Therefore, the effectiveness of the NN is lim-
ited in problems requiring on-line learning.

The cerebellar model articulation controller (CMAC) is classified
as a non-fully connected perceptron-like associative memory net-
work proposed by Albus (1975, 1975). The CMACs have been
adopted widely for the closed-loop control of complex dynamical
systems owing to its fast learning property, good generalization
capability, and simple computation compared with the neural net-
work (Chen, Lin, & Chen, 2008; Chiang & Lin, 1996; Kim & Lewis,
2000; Lane, Handelman, & Gelfand, 1992; Lin & Peng, 2004,
2005). This network has been already validated that it can approx-
imate a nonlinear function over a domain of interest to any desired
accuracy. The contents of these memory locations are referred as
weights, and the output of this network is a linear combination
of these weights in the memory addressed by the activated inputs
(Lane et al., 1992). The conventional CMAC uses local constant bin-
ary receptive-field basis functions. The disadvantage is that its out-
put is constant within each quantized state and the derivative
information is not preserved. Therefore, Chiang and Lin (1996)
developed a CMAC with non-constant differentiable Gaussian
receptive-field basis function, and provided the convergence anal-
yses of this network. Some applications of CMAC for nonlinear sys-
tems have been presented in Chen et al. (2008), Kim and Lewis
(2000) and Lin and Peng (2004, 2005). However, the major draw-
back of the existing CMACs is that their application domain is lim-
ited to static problem due to their inherent network structure. To
tackle this problem, an output recurrent cerebellar model articula-
tion controller (ORCMAC) is proposed, which includes the delayed
recurrent units in the conventional CMAC. Thus, ORCMAC presents
a dynamic CMAC.

The backstepping control technique is a systematic and recur-
sive design methodology for nonlinear systems. Numerous back-
stepping control design procedures have been proposed in the
literature for systems (Choi & Farrell, 2001; Krstic, Kanellakopou-
los, & Kokotovic, 1995; Lin et al., 2002; Wai, Lin, Duan, Hsieh, &
Lee, 2002; Zhang, Ge, & Hang, 2000). The idea of backstepping
design is to select recursively some appropriate functions of state
variables as pseudo-control inputs for lower dimension subsys-
tems of the overall system. Each backstepping stage results in a
new pseudo-control design, expressed in terms of the pseudo-con-
trol design from preceding design stages. The procedure termi-
nates a feedback design for the true control input which achieves
the original design objective by virtue of a final Lyapunov function
which is formed by summing the Lyapunov functions associated
with each individual design stage (Lin et al., 2002; Wai et al.,
2002; Zhang et al., 2000).

Because the dynamics of vehicle systems are apparently of
highly complex nature and are difficult to be modeled accurately,
it is difficult to design a conventional control scheme for the auto-
mated vehicle-following control system. In this paper, an adaptive
intelligent backstepping longitudinal control (AIBLC) system is
investigated for the vehicle-following control of a platoon of auto-
mated vehicles to achieve the H1 tracking performance. The devel-
oped AIBLC system is comprised of an adaptive ORCMAC and a
robust controller. The adaptive ORCMAC is used to mimic an ideal
backstepping control and a robust controller is designed to atten-
uate the effects caused by lumped uncertainty, so that the H1

tracking performance can be achieved (Chen & Lee, 1996; Liu &
Li, 2003; Wang, Chan, Hsu, & Lee, 2002). Moreover, the Taylor lin-
earization technique is employed to derive the linearized model of
the ORCMAC. The on-line adaptation laws of the AIBLC system are
derived on the basis of the Lyapunov stability analysis and H1 con-

trol theory so that the stability of the closed-loop system can be
guaranteed. Finally, the simulation results denominate that the
proposed AIBLC system can achieve favorable tracking perfor-
mance for a safe vehicle-following control. The study is organized
as follows. Problem statement is presented in Section 2. The struc-
ture of ORCMAC is described in Section 3. The design procedures of
the proposed AIBLC system are constructed in Section 4. Simula-
tion results are provided to validate the effectiveness of the pro-
posed control system in Section 5. Conclusions are drawn in
Section 6.

2. Problem statement

2.1. Platoon model

Fig. 1 describes a platoon of N vehicle following a leading vehi-
cle on a straight lane of highway (Sheikholeslam & Desoer, 1992).
The safety spacing of the ith vehicle in the platoon is denoted by Hi.
The abscissa of the rear bumper of theith vehicle with respect to a
fixed reference point Oon the road is denoted by xi. The position of
the lead vehicle’s rear bumper with respect to the same fixed ref-
erence point is denoted by xL. From the platoon configuration, the
spacing error ei can be written as:

ei ¼
xL � x1 � H1; for i ¼ 1
xi�1 � xi � Hi; for i ¼ 2;3; . . . ;N

�
ð1Þ

2.2. Longitudinal vehicle model

The longitudinal dynamics of the ith vehicle in the platoon are
modeled as follows (for i ¼ 1;2; . . . ;NÞ

_ni ¼
1

siðv iÞ
ð�ni þ uiÞ ð2Þ

_v i ¼ ai ¼
1

Mi
ðni � Kdiv2

i � dmiÞ ð3Þ

where ni denotes the driving/braking force produced by the ith
vehicle engine; v i ¼ _xi denotes the velocity of the ith vehicle; si rep-
resents the engine/brake time lag of the ith vehicle; ui specified the
control input of the ith vehicle’s engine (if ui > 0, then it represents
a throttle input and if ui < 0, it represents a brake input); ai denotes
the acceleration of the ith vehicle; Mi is the mass of the ith vehicle;
Kdi denotes the aerodynamic drag coefficient for the ith vehicle; and
dmi denotes the ith vehicle’s mechanical drag. Eq. (2) represents the
ith vehicle’s engine dynamics and (3) represents Newton’s second
law applied to the ith vehicle modeled as a particle of mass Mi. Dif-
ferentiating both sides of (3) with respect to time and substituting
the expression for fi in term of v i and ai from (2) and (3), it is ob-
tained that

_ai ¼ fiðai;v iÞ þ giðv iÞui ð4Þ

where fiðai; v iÞ ¼ � 1
siðv iÞ

ai þ Kdi
Mi

v2
i þ

dmi
Mi

h i
� 2Kdi

Mi
v iai and giðv iÞ ¼ 1

Misiðv iÞ
.

Assuming that all the parameters of the system are well known, the
nominal model of nonlinear systems (4) can be represented as

_ai ¼ foiðai;v iÞ þ goiui ð5Þ

where foiðai;v iÞ is the nominal value of fiðai;v iÞ, and goi > 0 is a nom-
inal constant of goiðv iÞ. If external disturbance is included and the
uncertainties occur, then the system model (4) can be described as

_ai ¼ ðfoiðai; v iÞ þ Dfiðai;v iÞÞ þ ðgoi þ Dgiðv iÞÞui

¼ foiðai;v iÞ þ goiui þ diðtÞ ð6Þ

where Dfiðai; v iÞ and Dgiðv iÞ denote the uncertainties; diðtÞ is re-
ferred to as the lumped uncertainty, defined as diðtÞ � Dfiðai;v iÞþ
Dgiðv iÞui. The lumped uncertainty is assumed to be bounded with
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