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a b s t r a c t

Load forecasting is an important subject for power distribution systems and has been studied from dif-
ferent points of view. This paper aims at the Gaussian noise parts of load series the standard v-support
vector regression machine with e-insensitive loss function that cannot deal with it effectively. The rela-
tion between Gaussian noises and loss function is built up. On this basis, a new v-support vector machine
(v-SVM) with the Gaussian loss function technique named by g-SVM is proposed. To seek the optimal
unknown parameters of g-SVM, a chaotic particle swarm optimization is also proposed. And then, a
hybrid-load-forecasting model based on g-SVM and embedded chaotic particle swarm optimization
(ECPSO) is put forward. The results of application of load forecasting indicate that the hybrid model is
effective and feasible.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Precise short-term load forecasting (STLF) is a basic require-
ment for the power system. As a very important task for power sys-
tem operation, STLF helps the electric utility to make important
decisions including unit commitment, load switching, etc. In addi-
tion, precise load forecasting improves the security of the power
system. The research approaches of short-term load forecasting
can mainly be divided into two categories: statistical method and
artificial intelligence method. In statistical method, an equation
can be obtained showing the relationship between load and its rel-
ative factors after training the historical data, while artificial intel-
ligence method tries to imitate human being’s way of thinking and
reasoning in forecasting the future load.

The statistical category includes multiple linear regression
(Amjady, 2001; Papalexopoulos & Hesterberg, 1990), stochastic
time series (Christianse, 1971), general exponential smoothing,
state space, etc. Usually, statistical method can predict the linear
load series very well, but it lacks the ability to analyze the nonlinear
character of load series due to the inflexibility of its structure. Ex-
pert system (Dash, Liew, Rahman, & Ramakrishna, 1995), artificial
neural network (ANN) (Chiu, Kao, & Cook, 1997; Xiao, Ye, Zhong,
& Sun, 2009) and fuzzy inference (Ying & Pan, 2008) belong to the
artificial intelligence category. Expert system tries to get the knowl-
edge of experienced operators and express it in an ‘‘if . . . then” rule,

but the difficulty is sometimes the expert’s knowledge is intuitive
and could not easily be expressed. Artificial neural network does
not need the expression of the human experience. It aims to estab-
lish a network between the input data set and the observed output
data set. It is good at dealing with the nonlinear relationship be-
tween the load and its relative factors, but the shortcoming lies in
over-fitting and long training time. Fuzzy inference is an extension
of expert system. It constructs an optimal structure of the simplified
fuzzy inference, which minimizes model errors and the number of
the membership functions to grasp nonlinear behavior of short-
term loads. However, it still needs the experts’ experience to gener-
ate the fuzzy rules. Generally, artificial intelligence methods are
flexible in finding the relationship between load and its relative fac-
tors, especially for the anomalous load forecasting.

Most of the STLF methods hypothesize a regression function (or
a network structure, e.g. in ANN) to represent the relationship be-
tween the input and the output variables. How to hypothesize the
function or the network is a major difficulty because it needs de-
tailed transcendental knowledge of the problem. If the regression
form or the network structure is improperly selected, the prediction
result would be unsatisfactory. Moreover, it is always a difficulty to
select the input variables. Too many or too few input variables
would decrease the accuracy of prediction expert system and fuzzy
inference do not need to hypothesize the input–output relation-
ship, but it is even more difficult to transform the experts’ experi-
ence to a rule database. Unlike the statistical models, this NN is a
data-driven and nonparametric weak model. Thus, the NN performs
well in the problem of load forecasting when the sample data are
sufficient. Nevertheless, the available pre-existing load series in
companies are often finite. Under this condition, the approximation
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ability and generalization performance of the NN are poor. To over-
come this disadvantage, a new approach should be explored.

Recently, support vector machine (SVM) (Vapnik, 1995), which
is a very promising statistical-learning method, has also been ap-
plied to STLF and has shown good result. SVM is firmly grounded
in the framework of statistical-learning theory and Vapnik–Cher-
vonenkis theory (VC), which has been developed over the last three
decades by Vapnik and Chervonenkis (1974) and Vapnik (1982).
Generally speaking, SVM is to minimize the structural risk instead
of the usual empirical risk by minimizing an upper bound of the
generalization error, and it obtains an excellent generalization per-
formance. Moreover, SVM is especially suitable for solving prob-
lems of small sample size and has already been used for
classification (Akay, 2009; Chandaka, Chatterjee, & Munshi, 2009;
Lee & Lee, 2006; Wu, Liu, Xiong, & Liu, 2009), regression and time
series prediction (Tang, Tang, & Sheng, 2009; Wu, 2009, in press;
Wu, Yan, & Yang, 2008; Wu, Yan, & Wang, 2009). SVM is to map
the input data into a higher dimensional feature space through a
nonlinear mapping, and then a linear regression problem is ob-
tained and solved in this feature space (Hu & Song, 2004; Ikeda &
Aoishi, 2005; Xiao, Rao, Cecchi, & Kaplana, 2008; Yao & Yu, 2006).

However, the standard SVM encounters some difficulty in real
application. Some improved SVMs have been put forward to solve
the concrete problem (Wu, 2009, in press; Wu & Yan, 2009a,
2009b; Wu et al., 2008; Wu, Liu, et al., 2009; Wu, Yan, et al.,
2009). The standard v-SVM adopting e-insensitive loss function
has good generalization capability in some applications (Wu,
2009, in press; Wu et al., 2008). But it is difficult to deal with the
normal distribution noise parts of series. Therefore, the main con-
tribution of this paper can be summarized as follows:

(a) A new version of SVM called SVM with Gaussian loss func-
tion (g-SVM) is proposed to approximate load series with
normal distribution noise. Compared with standard SVM,
the proposed SVM can penalize the Gaussian noise parts of
load series effectively.

(b) A new version of PSO called embedded chaotic particle
swarm optimization (ECPSO) is also proposed for parameters
selection of g-SVM. ECPSO can augment diversity of particles
by means of chaotic mapping and enhance the searching
ergodicity.

(c) A new hybrid-forecasting method composed of g-SVM and
ECPSO is proposed for the STLF. The hybrid-forecasting
method can find better solutions in the solution space of
the training phase than standard SVM and ARMA.

This paper is organized as follows. The g-SVM is described in
Section 2. Section 3 provides a new PSO called embedded chaotic
PSO (ECPSO) to obtain the optimal parameters of g-SVM. And then
gives the hybrid model based on the g-SVM and ECPSO. In Section
4, g-SVM is used to learn the relationships among all influencing
factors and loads. The suitability of the proposed approach is illus-
trated through an application to real load forecasting from the
Jiangsu Electricity Distribution Corporation in china, and then g-
SVM is compared with the standard v-SVM and ARMA. Section 5
draws some conclusions.

2. v-support vector machine with Gaussian loss function

2.1. Standard v-SVM model

Suppose training sample set T ¼ fðxi; yiÞg
l
i¼1, where xi 2 Rd;

yi 2 R. e-insensitive loss function can be described as follows:

cðxi; yi; f ðxiÞÞ ¼ jyi � f ðxiÞje ð1Þ

where jyi � f ðxiÞje ¼maxf0; jyi � f ðxiÞj � eg; e is a given real number.

The standard v-SVM with e-insensitive loss function can be de-
scribed as follows:

min
w;b;nð�Þ ;e

sðw; nð�Þ; eÞ ¼ 1
2
kwk2 þ C � v � eþ 1

l

Xl

i¼1

ðni þ n�i Þ
 !

s:t:

ðw � xi þ bÞ � yi � eþ ni

yi � ðw � xi þ bÞ � eþ n�i
nð�Þ � 0; e � 0

8><
>: ð2Þ

where w is a column vector with d dimension, C > 0 is a penalty fac-
tor, nð�Þi ði ¼ 1; . . . ; lÞ are slack variables and v 2 ð0;1� is an adjustable
regularization parameter, e is also an adjustable tube’ magnitude
parameter. Parameter e appears as the variable of optimal problem,
its value is given by the final solution.

2.2. g-SVM Model

The loss function of v-SVM has a significant effect on the gener-
alization capability of the algorithm. Thus, one might consider
which loss function should be used. Ideally, it should consist of a
simple structure to avoid difficult optimization problems, and it
should be suitable for the data. Meanwhile, the noise affects the
samples even after denoising. A set of training sample is generated
by a function plus additive noise

yi ¼ f ðxiÞ þ ni ð3Þ

The likelihood of an estimate Ff ¼ fðxi; f ðxi;wÞÞji ¼ 1;2; . . . ; lg based
on the training sample set is

PðFf jFÞ ¼
Yl

i¼1

Pðf ðxi;wÞjðxi; yiÞÞ ¼
Yl

i¼1

Pðf ðxi;wÞjyiÞ

¼
Yl

i¼1

pðyi � f ðxi;wÞÞ ¼
Yl

i¼1

pðniÞ ð4Þ

where p(ni) is the noise density. The appropriate loss function can
maximize the likelihood, it is equivalent to maximize log P(Ff|F)

log PðFf jFÞ ¼
Xl

i¼1

log pðyi � f ðxi;wÞÞ ð5Þ

Thus, the appropriate loss function is

cðxi; yi; f ðxi;wÞÞ ¼ � log pðyi � f ðxi;wÞÞ ¼ � log pðniÞ ð6Þ

The abnormal condition can be detected by comparing the similar-
ity measure, which is defined by

log PðFf jFÞ ¼
Xl

i¼1

log pðniÞ ¼ �
Xl

i¼1

cðxi; yi; f ðxi;wÞÞ ð7Þ

The importance of a new similarity measure is twofold: On the one
hand, it presents a principle that enables the construction of a loss
function. Once the noise density of the system is defined, its related
loss function can be obtained according to (7).

In real-world applications, the standard Gaussian density model
N(0, 1) is commonly used to describe noise. Hence, the Gaussian
density model and its loss function are employed here as outlined
in (8) and (9)

pðyi � f ðxi;wÞÞ ¼ pðniÞ ¼
1ffiffiffiffiffiffiffi
2p
p exp �1

2
n2

i

� �
ð8Þ

cðxi; yi; f ðxi;wÞÞ ¼
1
2
ðyi � f ðxi;wÞÞ ¼

1
2

n2
i ð9Þ

On the other hand, the result provides a theoretical standard by
which it can determine whether two signals are generated in the
same condition or not. Under normal conditions, the process dem-
onstrates unique characteristics that are reflected in its related
signals. The signal patterns in abnormal conditions exhibit
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