
A load-balanced distributed parallel mining algorithm

Kun-Ming Yu a, Jiayi Zhou b,*, Tzung-Pei Hong c, Jia-Ling Zhou d

a Department of Computer Science and Information Engineering, Chung Hua University, 707, Sec. 2, WuFu Rd., HsinChu 300, Taiwan, ROC
b Institute of Engineering and Science, Chung Hua University, 707, Sec. 2, WuFu Rd., HsinChu 300, Taiwan, ROC
c Department of Computer Science and Information Engineering, National University of Kaohsiung, 700, Kaohsiung University Rd, Kaohsiung 811, Taiwan, ROC
d Department of Information Management, Chung Hua University, 707, Sec. 2, WuFu Rd., HsinChu 300, Taiwan, ROC

a r t i c l e i n f o

Keywords:
Parallel and distributed processing
Cluster computing
Frequent patterns
Association rules
Data mining

a b s t r a c t

Due to the exponential growth in worldwide information, companies have to deal with an ever growing
amount of digital information. One of the most important challenges for data mining is quickly and cor-
rectly finding the relationship among data. The Apriori algorithm has been the most popular technique in
finding frequent patterns. However, when applying this method, a database has to be scanned many
times to calculate the counts of a huge number of candidate itemsets. Parallel and distributed computing
is an effective strategy for accelerating the mining process. In this paper, the Distributed Parallel Apriori
(DPA) algorithm is proposed as a solution to this problem. In the proposed method, metadata are stored
in the form of Transaction Identifiers (TIDs), such that only a single scan to the database is needed. The
approach also takes the factor of itemset counts into consideration, thus generating a balanced workload
among processors and reducing processor idle time. Experiments on a PC cluster with 16 computing
nodes are also made to show the performance of the proposed approach and compare it with some other
parallel mining algorithms. The experimental results show that the proposed approach outperforms the
others, especially while the minimum supports are low.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of information technology, compa-
nies have been working on digitizing all areas of business to im-
prove efficiency and thus competitiveness. Tremendous amounts
of data are thus generated due to the full digitization. It is impor-
tant to extract meaningful information from scattered data. Data
mining techniques have recently been developed for this purpose.
They can be classified into different models like classification,
regression, time series, clustering, association, sequence, and
among others. Especially, association rules are commonly used in
many applications.

The most important step in mining association rules is to dis-
cover frequent patterns. This step needs to count the times of the
patterns appearing in a database. According to the ways of gener-
ating candidate patterns, researches can be classified into gener-
ate-and-test (Apriori-like) (Agawal, Imilinski, & Swami, 1993) and
pattern-growth approach (FP-growth) (Han, Pei, Yin, & Mao,
2004). The former uses a bottom-up approach, which extends fre-
quent subsets by one item at a time. If an itemset with length k is
frequent, then its any subset with length less than k is also fre-

quent. Although many Apriori-like methods have been proposed,
it takes long time to find the frequent patterns when the database
contains a large number of transactions. Some researches thus ap-
ply parallel and distributed techniques to effectively speed-up the
mining process (Agrawal & Shafer, 1996; Cheung, Han, Ng, Fu, & Fu,
1996; Cheung, Lee, & Xiao, 2002; Cheung, Ng, & Fu, 1996; Ye &
Chiang, 2006). In a distributed environment, irregular and imbal-
anced computation loads may cause the overall performance to
be greatly degraded. Load balance among processors in the mining
process is thus very important to parallel and distributed mining.

In this paper, the Distributed Parallel Apriori (DPA) algorithm is
proposed as a solution to this problem. Its goal is to reduce the fre-
quency of database scans and to balance the computation loads
among participated computing nodes. In the proposed method, a
database has only to be scanned once because metadata are stored
in the form of Transaction Identifiers (TIDs). The approach also
takes itemset counts into consideration to improve load balancing
as well as to reduce idle time of processors.

The experimental results also show that the running time of the
proposed approach is significantly less than that of some previous
methods. The results also depict that DPA can successfully reduce
the number of scan iterations and can evenly distribute workloads
among processors.

The paper is organized as follows. Association rules and
parallel-distributed algorithms are reviewed in Section 2. The
DPA algorithm is proposed in Section 3. An example to illustrate

0957-4174/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2009.07.074

* Corresponding author. Tel.: +886 3 5186360; fax: +886 3 5186416.
E-mail addresses: yu@chu.edu.tw (K.-M. Yu), jyzhou@pdlab.csie.chu.edu.tw

(J. Zhou), tphong@nuk.edu.tw (T.-P. Hong), jlzhou@pdlab.csie.chu.edu.tw
(J.-L. Zhou).

Expert Systems with Applications 37 (2010) 2459–2464

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2009.07.074
mailto:yu@chu.edu.tw
mailto:jyzhou@pdlab.csie.chu.edu.tw
mailto:tphong@nuk.edu.tw
mailto:jlzhou@pdlab.csie.chu.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

the proposed algorithm is given in Section 4. The experimental
results are shown in Section 5. Finally, the conclusion is stated in
Section 6.

2. Related work

The frequent-pattern mining problem is defined as follows. Let
DB = {T1, T2, . . ., Tm} be a transactional database, in which each
transaction Ti consists of a set I of items {i1, i2, . . ., im}. Associated
with each transaction is a unique identifier, TID (Apte & Weiss,
1997). The support of an itemset x in a database DB, denoted
supDP(x), is the number of transactions in DB that contain x. For-
mally, supDP(x) = |{t| t DB and x t}|. The problem of frequent-pattern
mining is to find all itemsets x’s with supDP(x) P s for a given
threshold s (|DB| P s P 1).

The Apriori algorithm was proposed by Agrawal and Srikant
(1994) and is one of the most representative algorithms in mining
frequent patterns. Its main idea is based on the observation that
subsets of frequent itemsets must be frequent as well. The Apriori
algorithm extends frequent itemsets by one item at a time and
tests the candidates against the data. The algorithm terminates
when no further successful extension is possible. Even though
the Apriori algorithm can efficiently find frequent patterns, the
execution time gets longer when the database sizes get larger be-
cause of each candidate itemset should be tested against the data-
base. Since each candidate itemset with the same length may be
tested independently, a good design of data structure will make
the algorithm to be parallelized easily. Thus, many distributed par-
allel methods based on the Apriori algorithm were proposed (Eina-
kian & Ghanbari, 2006; Parthasarathy, Zaki, Ogihara, & Li, 2001;
Zaki, Ogihara, Parthasarathy, & Li, 1996; Zaki, Parthasarathy, Ogi-
hara, & Li, 1997).

Agrawal and Shafer (1996) then proposed parallel algorithms
based on Count Distribution (CD) and Data Distribution (DD) to solve
the frequent-pattern mining problem. The former (CD) partitions
the database into blocks and sends them to processors to compute
frequent itemsets. In the approach, (k + 1)-itemsets are also gener-
ated from k-itemsets. The advantage is that each processor only
needs to process the data it owns. The other one, DD, then further
improves the memory usage of CD. The amount of communication,
however, increases with processors increased. Cheung et al. then
proposed the Fast Distributed Mining (FDM) approach for finding
association rules (Cheung, Han et al., 1996; Cheung, Ng et al.,
1996). FDM reduces the candidate set by both local pruning and
global pruning. Cheung et al. also improved the above approach
and proposed the Fast Parallel Mining (FPM) algorithm (Cheung
et al., 2002) in 2002 for parallel and distributed mining. FPM needs
less communication than FDM. Its mining performance can thus be
raised.

Ye and Chiang (2006) also proposed a parallel-distributed algo-
rithm based on the Trie tree (Bodon, 2003). Their algorithm distrib-
utes workloads according to the Trie tree to balance and speed-up
the computation. However, the items are distributed to the nodes
only based on the first level of the Trie tree. This may cause the
sizes of candidate itemsets (workloads) among processors signifi-
cantly varying. Moreover, this method also requires a database to
be scanned many times.

Recently, Wu and Li proposed an efficient frequent-pattern
mining algorithm, called EDMA, based on the Apriori algorithm
(Wu & Li, 2008). EDMA uses the CMatrix data structure to store
the transactions for mining. This can get rid of database re-scan-
ning. EDMA can minimize the number of candidate sets and reduce
the exchange messages by local and global pruning. Since it may
decrease the average size of transactions and datasets, the execu-
tion time for verifying frequency can also be reduced. Moreover,

it can decrease the communication time among computing nodes.
The execution time, however, gets longer when the database size is
larger, since EDMA will access CMatrix a lot of times when calculat-
ing candidate itemsets.

Therefore, in this paper, a Distributed Parallel Apriori (DPA)
algorithm is proposed to speed-up the process of frequent-pattern
mining. By storing the TIDs of itemsets and precisely calculating
and distributing computation workloads, DPA is able to effectively
accelerate the computation of itemsets and reduce the required
scan iterations to a database.

3. The proposed Distributed Parallel Apriori (DPA) algorithm

The execution time of different processors in Ye and Chiang’s
algorithm may vary in a wide range because distributing the items
according to the Trie tree in upper levels may lead to imbalanced
workload. In order to observe the execution time of each processor
in Ye and Chiang’s algorithm, we implement their algorithm on the
dataset T10I4D12KN100 K with the minimum support set at 0.2%
using the MPI library on a PC cluster. Table 1 shows the execution
time of each processor in Ye and Chiang’s algorithm. Moreover, it
can also be observed that the CPU time and the communication
time occupied 97% and 3% of the total execution time, respectively.
Since their algorithm scans a database many times to verify
whether the candidate patterns are frequent or not, we may also
improve the performance by reducing database scan.

To avoid the problems of load imbalance and multiple scans, the
DPA algorithm is proposed in this paper, so that a database needs
to be scanned only once while maintaining load balance among
processors. In the proposed algorithm, each transaction has a un-
ique Transaction Identifier, called TID. By using hash functions to
store TIDs in a table structure, the number of itemsets can be
quickly calculated without the need of re-scanning the database.

For achieving a good load balance, the proposed approach
adopts a heuristic based on the weights of frequent itemsets. The
workload measure for finding frequent (k + 1)-itemsets is esti-
mated from frequent k-itemsets. The frequent k-itemsets are first
sorted according to their counts in descending order. Let len(freqk)
denote the total number of frequent k-itemsets. The weight of the
ith frequent k-itemset (Ii) is then set as follows:

weightðIiÞ ¼ lenðfreqkÞ � i� 1: ð1Þ

The concept can be represented by Fig. 1.
The total weight of all the frequent k-itemsets can then be

found as follows:

TotalWeight ¼
XlenðfreqkÞ�1

i¼0

weightðIiÞ: ð2Þ

Assume there are p processors available. Each professor can then
process the subset of k-itemsets with the sum of their weights close
to TotalWeight/p. For simplicity, the frequent k-itemsets are put one

Table 1
Execution time of each processor in Ye and Chiang’s algorithm.

Processor
ID

Execution
time

CPU time Communication time

Send Receive

0 129.4010358 127.838176 0.367843151 1.195016623
1 89.78008485 88.00373292 0.33731699 1.439034939
2 77.47582674 75.11535358 0.364768028 1.995705128
3 89.60780978 87.40449095 0.320035219 1.883283615
4 75.14281654 73.05057096 0.312260389 1.779985189
5 70.93045855 68.58841801 0.307432413 2.034608126
6 71.56252313 68.99555421 0.301764011 2.265204906
7 72.59657574 70.05979991 0.319941998 2.21683383

2460 K.-M. Yu et al. / Expert Systems with Applications 37 (2010) 2459–2464

Download	English	Version:

https://daneshyari.com/en/article/384302

Download	Persian	Version:

https://daneshyari.com/article/384302

Daneshyari.com

https://daneshyari.com/en/article/384302
https://daneshyari.com/article/384302
https://daneshyari.com/

