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a b s t r a c t

We present a methodology that characterizes through the topology of a network the capability of flow
conductivity in fractures associated to a reservoir under study. This strategy considers the fracture image
as a graph, and is focused on two key aspects. The first is to identify communities or sets of nodes that are
more conductive, and the second one is to find nodes that form the largest paths and have therefore more
possibility of serving as flow channels. The methodology is divided into two stages, the first stage obtains
the cross points from fracture networks. The second stage deepens on the community identification. This
second stage carries out the process of identifying conductive nodes by using centrality measures
(betweenness, eccentricity and closeness) for evaluating each node in the network. Then an optimization
modularity method is applied in order to form communities using two different types of weights between
cross points or nodes. Finally, each community is associated with the average value of each measure. In
this way the maximum values in betweenness and eccentricity are selected for identifying communities
with the most important nodes in the network. The results obtained allow us to show regions in the frac-
ture network that are more conductive according to the topology. In addition, this general methodology
can be applied to other fracture characteristics.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many real world problems such as biological, social, metabolic,
food, neural networks and pathological networks among others
can be modeled and studied as complex networks (Kolaczyk,
2009; Cohen, & Havlin, 2010; Estrada, 2011). They are mathemat-
ically represented and topologically studied to uncover some
structural properties. In the petroleum industry one issue of
importance is the study and analysis of fluid flow in fractured
rocks. In this paper we present a methodology for the character-
ization, through the topology of a network, of the capability of
flow conductivity in fractures associated to a reservoir under
study. Our methodology extracts from a fracture image a graph
focusing on two key aspects. The first is to identify regions of
fractures that are more conductive, and the second one is to find
nodes that belong to the largest paths that have more possibility
of serving as flow channels. This paper deals with real fracture
networks derived from original hand-sample images. These
images of rocks correspond to a Gulf of Mexico oil reservoir,
and are used as test examples for identifying properties related
to the fluid flow from a topological perspective. This methodology

assumes that the fractures in the image have all being identified
as conductive. Then it determines qualitatively different conduc-
tive regions in the fracture network through the analysis of the
cross points of the fractures, and quantifies the connectivity
among these cross points and their topological function within
the network. This methodology consists of: (i) the application of
centrality measures that involves the estimation of shortest paths,
and (ii) the identification of node sets by means of community
detection. The communities are subunits associated with the
more highly interconnected parts used for determining the global
organization in the network (Lancichinetti, Kivelä, Saramäki,
Fortunato, 2010). Many methods have been developed for the
identification of communities (Clauset, Newman, & Moore,
2004; Girvan & Newman, 2002; Newman, 2004; Porter, Onnela,
& Mucha, 2009; Radicchi, Castellano, Cecconi, Loreto, & Parisi,
2004). We apply an efficient method reported in the literature
(Condon & Karp, 2001; Lancichinetti & Fortunato, 2009) for
grouping sets of nodes based on a modularity function. In addi-
tion, for the construction of these communities a formulation
for computing the weights among cross points is proposed. This
approach will help in analyzing different study regions and to
characterize the fracture networks by means of the topological
properties obtained, and hence it can identify conductive regions.
Also these results can be used in combination with other geo-
physical or petrophysical properties from the fracture network.

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.08.011

⇑ Corresponding author.
E-mail addresses: esangel@imp.mx (E. Santiago), velascoj@imp.mx (J.X. Velasco-

Hernández), mromeros@imp.mx (M. Romero-Salcedo).

Expert Systems with Applications 41 (2014) 811–820

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.08.011&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.08.011
mailto:esangel@imp.mx
mailto:velascoj@imp.mx
mailto:mromeros@imp.mx
http://dx.doi.org/10.1016/j.eswa.2013.08.011
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


The paper is organized as follows. In Section 2, previous work
and basic concepts are described; in particular the centrality mea-
sures and a method for determining communities or regions are
discussed. In Section 3, our general scheme is explained. In this
part the association between the centrality measures and the iden-
tification of communities are described. In Section 4, we show our
results, applying the methodology to fracture hand-sample images.
Finally, in Section 5, we give our conclusions.

2. Previous works and theoretical framework

In the characterization of naturally fractured reservoirs (NFR)
one of the main challenges in the hydrocarbon industry is the gen-
eration of a representative model for it (Aguilera, 1995; Baker &
Kuppe, 2000; Narr, Schechter, & Thompson, 2006; Nelson, 2001;
Nikravesh, 2004). This characterization requires putting together
different data sources about the whole reservoir (Bogatkov & Bab-
adagli, 2007; Gauthier, Garcia, & Daniel, 2002; Guerreiro, Silva,
Alcobia, & Soares, 2000). One of the important problems is the
determination of the nature, and disposition of heterogeneities
that inevitably occur in petroliferous formations in order to predict
the capability for fluid transport. Different strategies have been
developed to tackle this problem. Some authors have focused on
the analysis of the properties of the fluid flow (Sarda, Jeannin,
Basquet, & Bourbiaux, 2002; Warren & Price, 1961; Yang, Myer,
Brown, & Cook, 1995), others in the modeling and simulation of
fracture networks (Berkowitz, 2002; Sarkar, Toksöz, & Burns,
2004), and some others in the analysis of topological properties
by applying statistical techniques on the structure where the fluid
transport may occur (Cacas, Ledoux, de Marsily, & Tillie, 1990),
using in most cases synthetically generated fracture networks
(Ghaffar, Nasseri, & Young, 2012). In this work, a topological ap-
proach on fracture rocks is presented by transforming and analyz-
ing the fracture network from an original fracture image. This
network is then analyzed as a complex network. It must be pointed
out that a large majority of complex networks come from problems
in the areas of biology, communication, internet, and social sci-
ences (Girvan & Newman, 2002; Newman 2004; Subelj, Furlan, &
Bajec, 2011). In geology this point of view is new to the best of
our knowledge although many developments have been imple-
mented for images associated to different types of data such as
gamma ray records (Fiorini, Abel, & Scherer, 2011; Ya-Hao, 2008).
A first attempt to the analysis of fracture systems as complex net-
works can be consulted in Santiago, Romero-Salcedo, and Velasco-
Hernández, (2012). The analysis involves a technique that allows
the classification of a set of images into two groups and the iden-
tification of the distributions of intersection points of the segments
of fractures. In the present work a technique for identifying com-
munities or regions is included. In reservoir characterization, some
traditional clustering techniques have been used as, for example,
k-means, neural network and fuzzy c-means clustering for identi-
fying sets of elements with common properties (Liu, 2012; Nikr-
avesh, 2004). The latter applies a clustering technique on a
specific network structure for information sharing and diffusion
of information and to examine the network content. A group of
nodes is defined in the complex network terminology as a commu-
nity (Fortunato, 2010; Newman, 2010). One of the earlier methods
for detecting communities is the hierarchical divisive algorithm
proposed by Girvan and Newman (2002). The idea is to remove
iteratively links based on the value of their betweenness (this mea-
sure is described later). The procedure ends when the resulting
partition reaches a maximum limit. One variation of this method
is to use the edge clustering coefficient (Radicchi et al., 2004).
The fast greedy modularity optimization proposed in Clauset
et al. (2004) is a fast algorithm derived from a previous work of
Newman (2004). The process begins from a set of isolated nodes

where the links are iteratively added until generating a maximum
number of communities obtained by the method of Girvan and
Newman (2002) in each step. One method derived from it is the
exhaustive modularity optimization via simulated annealing. Fast
modularity optimization defined by Blondel, Guillame Jean-Loup,
and Lefebvre (2008), is a multistep method based on the local opti-
mization of modularity (Girvan & Newman, 2002) in the neighbor-
hood of each node. In our work this technique for grouping nodes is
applied because of its computational efficiency. Other methods fo-
cus on determining overlapping of nodes (Palla, Derényi, Farkas, &
Vicsek, 2005), to find the best cluster structure of a graph (Rosvall
& Bergstrom, 2008), to simulate the diffusion process on a graph
(Van Dongen, 2000), or determining the spectral properties of the
graph (Donetti & Muñoz, 2005).

In our methodology the analysis of the flow conductivity re-
gions in fracture networks is executed in two main steps. First cen-
trality measures to all the nodes are applied, and then modularity
optimization (Blondel et al., 2008) is used. The formulation of a
graph and its association with the fracture network is defined in
the next subsections; also the methods, parameters and measures
employed in the methodology are described.

2.1. Formal definition of a graph

Formally a graph is defined as G = (V, E) where V = {v1, v2, . . . , vn}
is the set of nodes, and E = {e1, e2, . . . , em} the set of edges; n and m
denote the number of nodes and edges, respectively. For an un-
weighted graph, the weight x(e) = 1, for all e e E, and pst is a path
from s e V to t e V formed by a sequence of nodes and adjacent
edges, beginning in the node s and ending in the node t. d(s, t) is
the length of a path measured by the sum of the edge weights be-
tween the nodes s and t. dG(s, t) is the geodesic path, e.g., the short-
est path between two nodes, and rst = rts is the number of the
shortest paths from s e V to t e V.

2.2. Centrality measures

The intuitive concept of centrality based upon the structural
properties of centrality of a graph G, was introduced initially by
Bavelas (1948), and one of these measures is the betweenness cen-
trality proposed by Anthonisse (1971), and latter by Freeman
(1977), who define centrality CB(i) as the ratio between rst(i) and
rsi, i.e., the number of times in which a node i falls on the geodesic
path between the nodes s and t, and the number of shortest paths
between the nodes s and t, respectively. The formula for computing
betweenness of a certain node i is presented in (1). Thus, it mea-
sures the potential for controlling the communication of a network.
An improved version of this centrality index is defined in Brandes
(2001) and is used in this work. This improved index includes a
more efficient and faster way to compute large and very sparse net-
works. It is based on an accumulation technique that solves the sin-
gle-source shortest-path problem by using the Bellman criterion,
where rst(i) takes the value of rsi � rit if the shortest paths between
s and t pass through i, otherwise takes zero as is shown in (2). In this
expression, dG(s, t) is the shortest distance between the nodes s and
t. A high centrality score indicates that a node can be reached by
other nodes on short paths. In this work, this measure is applied
to all the cross points of each fracture image, and the maximum
scores obtained indicate the community of nodes with more capa-
bility for distributing any fluid in the fracture system.

CBðiÞ ¼
X

s–i–t

rstðiÞ
rst

; 8s; t 2 V ð1Þ

rstðiÞ ¼
0 if dGðs; tÞ < dGðs; iÞ þ dGði; tÞ
rsi � rit otherwise

�
ð2Þ
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