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1. Introduction

When dealing with real systems it is not possible to obtain an
accurate model of a system, some uncertainty has to be always
considered. If the structure of a system is supposed to be given
but the parameters are not known precisely we speak about para-
metric uncertainty. In engineering practice it is of fundamental
importance that the systems preserve stable behaviour for a whole
admissible parameter variations. In this view it could be also
appropriate to know, if a system is stable for some nominal values
of its parameters, within what boundary the stability remains pre-
served. Such a problem is called stability margin determination.

The problems mentioned above and solved by classical robust
analysis approach Bhattacharyya, Chapellat, and Keel (1995)
assume that the uncertainty remains the same independently on
the working conditions. It means that the worst case has to be
considered and conservative results are obtained. However, in
many practical situations the uncertainty varies, e.g. depending
on operation conditions. In such a case the uncertainty interval
can be often parameterized by a confidence level. This parameter
is usually tough to measure but it can be estimated by a human
operator. If each coefficient of a system is described in this way
the system corresponds to a family of interval linear time-invariant
systems parameterized by the confidence level.

To handle such type of uncertain systems a mathematical
framework is desired. Such a framework was proposed in Bondia
and Pic6 (1999). They adopted the concept of fuzzy numbers and
fuzzy functions (Dubois & Prade, 1980), their generalizations
(Wei-xiang & Bang-yi, 2010) and fuzzy arithmetic (Hanss, 2005;
Chen & Chen, 2009). The approach interprets a set of intervals
parameterized by a confidence level as a fuzzy number with its
membership degree given by this confidence level. It means that
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all the parameters c; are characterized by means of fuzzy numbers,
¢;, with membership functions o; = ,uﬁl_(-). When a confidence level
o; is specified then the parameter interval is determined by the
o-cut [E,-]“,_. If o; =1 (the maximum confidence level - the system
works in normal operating conditions) the parameter c; can take
any value (crisp or interval) within the cores of ¢;’s (c; = ker(¢;)).
If ;=0 (the minimum confidence level) the parameter ¢; is the
interval equal to the support of ¢; (c; € supp(c;)).

Recently, various problems related to linear systems with fuzzy
parametric uncertainty have been solved. In Bondia, Sala, Pic6, and
Sainz (2006) controller synthesis for such systems under fuzzy pole
placement specifications is suggested. Several approaches of
simulation of fuzzy discrete-time systems with uncertain initial
state are proposed in Hanss (2002). A practical application of sys-
tems with parametric uncertainty characterized by fuzzy numbers
is described in Seng, Nestorovic, and Vicini (2007).

The characteristic polynomial of a linear system with fuzzy
parametric uncertainty with parameters entering its coefficients
independently can be written as

D(S) = 0o+ 415 + - - - + ApS" (1)

where the coefficients a;, i =0,...,n are described by fuzzy sets
with membership functions t (-).

For common confidence level o = o, the o-cut representation of
polynomial (1) corresponds to an interval polynomial

[D(s)], = ao(ax) + ay (a)s + - - - + an(o)s" (2)

where a;(a) = [ai],,.

The main task of stability analysis of such polynomial is to
determine its stability margin, i.e. minimum confidence level « pre-
serving stability of (2). The problem has been solved using a binary
search in Nguyen and Kreinovich (1994) or using Argoun stability
test (Argoun, 1987) in Bondia and Pic6 (2003) or with the help of
Kharitonov theorem (Kharitonov, 1978) and Tsypkin-Polyak locus
in Lan (2005).
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Nevertheless, the parameters of a system or the coefficients of
characteristic polynomials are very often identified using mea-
sured input-output data. In such case it is more realistic to charac-
terize the set of parameters by a multidimensional membership
function rather than employing fuzzy numbers. For example when
utilizing well-known prediction error (PE) identification algorithm
(Hanss, 1999; Soderstrém & Stoica, 1989; Bombois, 2000; Bombois,
Gevers, Scorletti, & Anderson, 2001) the coefficients a = [do, . . .,a,]"
lie in an ellipsoidal set

@-a%r@-a%«<1 3)

where I' is a positive definite matrix and the vectora® = [aJ, ..., a?]"
is the parameter nominal value. Performing more sets of measure-
ments each with different confidence level « resulting in I'(«) it is
reasonable, in order to aggregate the knowledge obtained from each
of them, to characterize the coefficients by a fuzzy set described by
the a-cuts

A, ={a:(@

where the confidence level « indicates the belief in the experiment
the measured data were obtained by. The natural question arises
what minimum confidence level o, is necessary so that the
a-cut polynomial (family of polynomials)

[p(s)l, acAl

remains stable.

2)r()@-a%) < 1) (4)

=Gy + WS+ -+ + ApS"

nin ()

Omin

2. Problem formulation

In the sequel we will consider polynomial p(s) defined by its
o-cut representation

PO =0 +as+ - +as’, acAl,

a=|[ay,...,a,)", aeR, k=0,....n ©
with fuzzy set A characterized by the o-cuts
A, =fa: @ >0} ={a:(@-a")T(xa)@-a") <1} (7)

where a° = [ag,.,.,aﬂ] is a nominal point and I'(x,a) is (n+1) x

(n+ 1) square diagonal matrix

1
7a(2do)

I'(o,a) =
V2 (00n)
with

for a > al
for a<al,

_ (@)
yk(ax ak) - {yk(a)

where y;(«) and 7y, («) are nonnegative decreasing functions de-
fined for 0 < a < 1.

Let us note that for any 0 < « < 1 the corresponding coefficient
space of the family of polynomials (6) is a non-symmetric axes-
parallel hyperellipsoid with the lengths of the semiaxes given by
Vi () and y; () for coefficients lying below and above their nom-
inal values, respectively. Non-symmetricity of the hyperellipsoid
makes it possible to consider the cases when the nominal point
corresponding to most often operating conditions does not lie in
the middle of measured data.

Let us suppose that the most confident (1-cut) uncertain poly-
nomial [p(s)],_, is robustly Hurwitz stable. The task is to find stabil-
ity margin of the polynomial p(s), i.e. minimum confidence level
®min € [0,1] such that uncertain polynomial [p(s)], is stable for
o > 0lmin and unstable for o < dmin.

k=0,...,n ®)

In order to solve the problem a generalization of the Tsypkin-
Polyak plot (Tsypkin & Polyak, 1991) will be used.

3. Generalized Tsypkin-Polyak plot

The main result of the paper is based on a modification of zero
exclusion principle (Mansour, 1994).
Write the uncertain polynomial (6) as

(s)], = P(s,Q) = ap + a1 + - + ayS",
N BN A (10)
Q=) - {a Slecd 1}
and
p(jo,Q) = h(w,Q) +jwg(w, Q). (11)

Denote p;(®,Q) = h(w,Q)/S(w) + jg(w,Q)/T(w) where S(w) and T(w)
are positive functions of @ > 0 such that lim,_, . h(®)/S(w) and
limg,_, ..g(w)/T(w) are finite.

Theorem 1 (Mansour (1994)). The family of polynomials p(s,Q)
(10) with [p(s)],_, being stable is stable if and only if

(a) the coefficient a, does not include 0,
(b) the coefficient ao does not include 0,
(€) 0¢py(w,Q) Vo > 0.

Let us again decompose a member of family of polynomials (10)
into its even and odd part. For s =jw we can write

p(jw,a) = h(w,a) + jog(w,a), aecQqQ. (12)

The nominal polynomial po(s) evaluated at s =jw then can be
written as

Po(iw) = p(jw,a°) =
where

ho (@) + jeg, () (13)

ho() = @ - e + ot -

14
go(w) =ad — ade? + ddw* - (14)

Denote
=0.5(S; (@, ) + S5 (w, ) + 0.5(S5 (w, ) — S5 (w, o)) sgn ho(w)
/ , (2 s 3
S, (@,0) = (Z )"+ Z (Va2 (™) ) ;
3 -
n/4 2)/4 , 3
( (Vi 4" Z Vit (2 ) > )
k=0
2(w,0) = 0.5(T; (@, %) + T3 (w, %)) + 0.5(T; (w, o) — T (@, 0t))SgN go(),
n-1)/4 , (=34 R 3
Ty (w,0) = < (Vi (0)0™)" + Z (Vaks3(@)@0*72) ) )
k: k=0

1

(n-1)/4 , (-3 N\
\ k
( (Vaer (™) + Z (Vaki3 () @0*72) ) :

k=0 k=0
(15)
Without loss of generality suppose a2 > 0. Then the key theorem
can be stated.

Theorem 2. Denote by o, and oy the solutions of

(a) ay =7, (),
(b) ad = yg (o), respectively, and by o, the solutions of

2 2
(c) (h" (@) ) + (gﬂ(‘”) ) =1 with respect to o for each w >0, on

So(w,o Ty (w,00)

the interval o € [0, 1]. Assign zero in the case that a solution
does not exist.Then
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