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a b s t r a c t

We observe a surface roughness in end milling machining process which is influenced by machine
parameters, namely radial rake angle, speed and feed rate cutting condition. In this machining, we need
to minimize and to obtain as low as possible the surface roughness by determining the optimum values of
the three parameters. In previous works, some researchers used a response surface methodology (RSM)
and a soft-computing approach, which was based on ordinary linear regression and genetic algorithms
(GAs), to estimate the minimum surface roughness and its corresponding values of the parameters.
However, the construction of the ordinary regression models was conducted without considering the
existence of multicollinearity which can lead to inappropriate prediction. Beside that it is known the rela-
tion between the surface roughness and the three parameters is nonlinear, which implies that a linear
regression model can be inappropriate model to approximate it. In this paper, we present a technique
developed using hybridization of kernel principal component analysis (KPCA) based nonlinear regression
and GAs to estimate the optimum values of the three parameters such that the estimated surface rough-
ness is as low as possible. We use KPCA based regression to construct a nonlinear regression and to avoid
the effect of multicollinearity in its prediction model. We show that the proposed technique gives more
accurate prediction model than the ordinary linear regression’s approach. Comparing with the experi-
ment data and RSM, our technique reduces the minimum surface roughness by about 45.3% and 54.2%,
respectively.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Surface roughness is one of the most common performance
measurements in a machining process and an effective parameter
to measure the quality of machined surface. A machined surface
has the higher quality than another machined surface when it
has lower surface roughness than the other one. In machining,
we need to have as low as possible of the surface roughness by set-
ting the suitable values of the influenced parameters. Hence,
improvement in the quality could be indicated by referring to the
performance of the influenced parameters in its surface roughness.
The conventional optimization approach can optimize machining
problem by using Taguchi technique, factorial technique and
response surface methodology (RSM) technique (Mukherjee &
Ray, 2006). The new trends of optimization techniques are soft-
computing based optimization, including genetics algorithms
(GAs), Simulated Annealing (SA), Tabu Search, Particle Swarm Opti-
mization (PSO) and Neural Networks (NN), which can be used to
estimate the highest quality of machined surface (Mukherjee &
Ray, 2006; Zain, Haron, & Syarif, 2010).

Recently, Zain et al. (2010) proposed an optimization technique
based on ordinary linear regression and GAs to estimate the quality
of surface roughness. They used the experiment data conducted by
Mohruni (2008) in which the surface roughness is influenced by
radial rake angle, speed and feed rate cutting condition of the ma-
chine used. Their technique was performed by developing linear
regression models using the Mohruni’s data, and followed by
model selection among the regression models. Then, they devel-
oped a linear programming problem in which the objective func-
tion was one of their regression models and the constraints were
developed based on the range of radial rake angle, speed and feed
rate cutting condition data.

It is known that one important issue in ordinary linear regres-
sion is the existence of multicollinearity in its regressor matrix.
We say that a multicollinearity exists on a matrix regressors, say
Z, if some eigenvalues of ZTZ are close to zero. In practice, when
the ratio between a eigenvalue of ZTZ and the largest eigenvalue
of ZTZ of is less than 1/1000 then a severe multicollinearity exists
in Z (Montgomery, Peck, & Vining, 2006). When we use ordinary
linear regression in the Mohruni’s data, we can find that the ratios
of eigenvalues and the largest eigenvalue of its regressor matrix are
1.329 � 10�8, 3.036 � 10�7 and 3.249 � 10�4, respectively, which
indicate the existence of a severe multicollinearity in this regressor
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matrix. When a severe multicollinearity exists in a regressors ma-
trix, it can give the negative effects to the corresponding regression
model such as its prediction model can be inappropriate to be used
(Montgomery et al., 2006).

We also noticed that the ideal surface roughness model is given
by (Zain et al., 2010)

Ra ¼ cmkf lcme ð1Þ

where Ra is the experiment (measured) surface roughness (lm), m is
the cutting speed (m/min), f is the feed rate (mm/tooth), c is the ra-
dial rake angle (�), e is the experimental error and c, m, k and l are
the model parameters to be estimated, respectively. It is obvious
that model (1) is, itself, nonlinear which implies that a linear regres-
sion model can be inappropriate model to approximate it.

In this paper, we present a technique using hybridization of ker-
nel principal component analysis (KPCA) based regression and GAs to
estimate the suitable values of the three parameters such that the
estimated surface roughness is as low as possible. We use KPCA
based regression, usually referred as kernel principal component
regression (KPCR), to overcome the effect of linearity and multicol-
linearity in regression. KPCA has been used for nonlinear systems
by mapping an original input space into a higher-dimensional
feature space (Cho, Lee, Choi, Lee, & Lee, 2005; Lu, Zhang, Zhang,
& Zhang, 2007; Scholkopf, Smola, & Muller, 1998; Scholkopf &
Smola, 2002). KPCA becomes an attractive algorithm because it
does not involve nonlinear optimization, it is as simple as the prin-
cipal component analysis (PCA) and it does not need to specify the
number of principal components prior to modeling compared to
other nonlinear methods. KPCA based regression was studied by
Rosipal, Girolami, Trejo, and Cichoki (2001), Rosipal and Trejo
(2002), Jade, Srikanth, Kulkari, Jog, and Priya (2003), Hoegaerts,
Suykens, Vandewalle, and Moor (2005), Wibowo (2008) and Wi-
bowo and Desa (2011a, 2011b). which can be used to perform a
nonlinear prediction and to dispose the effects of multicollinearity
in regression model. Afterward, we use the Cross Validation (CV)
method to select the ‘best’ regression model, and followed by
developing nonlinear programming problems in which GAs are
performed to estimate the surface roughness and its optimum
solutions.

The rest of the manuscript is organized as follows. In Section 2,
we review theories and methods of linear regression, KPCA, KPCA
based regression including its algorithm, and followed by GAs. In
Section 3, we present our case study using Mohruni’s data, model
selection and constructing nonlinear programming problem of
the surface roughness. We end this section by finding the
minimum of the surface roughness and its corresponding variables.
Finally, conclusions are given in Section 4.

2. Theories and methods

2.1. Linear regression

Suppose that we have the data yi xi1 xi2 � � � xiNð ÞT 2 Rpþ1

where i = 1,2, . . . ,N; N is the number of data and R is the set of real

numbers. Then, we define y ¼ y1 y2 � � � yNð ÞT 2 RN; X ¼

1N
eX� �
2 RN�ðpþ1Þ where eX ¼ x1 x2 � � � xNð Þ 2 RN�p;1N is

N � 1 vector with all elements equal to one, xi ¼ xi1 xi2 � � �ð
xiNÞT 2 Rp. The ordinary multiple linear regression model is given
by

y ¼ Xbþ e ð2Þ

where b ¼ b0 b1 � � � bp

� �T 2 Rpþ1 is a vector of regression coef-
ficients and e ¼ e1 e2 � � � eNð ÞT 2 RN is vector of residuals. The
matrix X is called the matrix regressors.

When we use the ordinary least squares (OLS) method to find the
estimate of b, say b̂; then the estimate is found by minimizing

XN

i¼1

e2
i ð3Þ

where ei ¼ yi � _xT
i b and _xT

i ¼ 1 xT
i

� �
. The solution can be found by

solving the following linear equation

XTXb̂ ¼ XTy ð4Þ

The prediction of linear regression is given by

gðxÞ ¼ b̂0 þ
Xp

i¼1

b̂ixi ð5Þ

where g is a function from RN into R and x ¼ x1 x2 � � � xpð ÞT .
When multicollinearity exists on X then the prediction g(x) can be
inappropriate to be used (Montgomery et al., 2006) and called it
the effect of multicollinearity.

2.2. Regression based on kernel principal component analysis (KPCA)

2.2.1. KPCA
Assume that we have a function w : Rp ! F, where F is the fea-

ture space which is a Euclidean space with dimension pF (pF P p).
Then, we define the matrices C ¼ ð1=NÞWTW 2 RPF�PF and
K ¼ WWT 2 RN�N where W ¼ wðx1Þ wðx2Þ � � � wðxNÞð ÞT 2 RN�pF

and assume that
PN

i¼1wðxiÞ ¼ 0. The relation of eigenvalues and
eigenvectors of the matrices C and K were studied by Scholkopf
et al. (1998) and Wibowo (2008).

Let p̂F be the rank of W where p̂F 6minðN; pFÞ which implies
that both rank (K) and rank (WTW) are equal to p̂F . It is evident that
the eigenvalues of K are nonnegative real numbers since the matrix
K is symmetric and positive semidefinite (see Anton (2000) for the
detailed discussion of symmetric and positive semidefinite matrix).
Let k1 P k2 P � � �P k~r P k~rþ1 P � � �P kp̂F

> kp̂Fþ1 ¼ � � � ¼ kN ¼ 0 be
the eigenvalues of K and B ¼ b1 b2 � � � bNð Þ be the matrix of
the corresponding normalized eigenvectors bs(s = 1,2, . . . ,N) of K.
Then, let al ¼ bl=

ffiffiffiffi
kl
p

and al = WTal for l = 1,2, . . . , p̂F . The eigenvec-
tors al, however, cannot be found explicitly since we do not know
WTW explicitly. However, we can obtain the principal component
of w(x) corresponding to nonzero eigenvalues of WTW by using a
kernel trick. The lth principal component of w(x) (l = 1,2, . . . , p̂F) is
given as follows:

wðxÞT al ¼
XN

i¼1

aliwðxÞTwðxiÞ ð6Þ

where ali is the ith element of al. According to Mercer Theorem
(Scholkopf et al., 1998; Scholkopf & Smola, 2002), if we choose a
continuous, symmetric and positive semidefinite kernel j : RP�
RP ! R then there exists / : RP ! F such that j(xi,xj) = u(xi)Tu(xj).
Instead of choosing w explicitly, we choose a kernel j and employ
the corresponding function u as w. Let Kij = j(xi,xj) then K and
alðl ¼ 1;2; . . . ; p̂FÞ are explicitly known now. Therefore, Eq. (6) is
also explicitly known and can be written as

wðxÞT al ¼
XN

i¼
alijðx;xiÞ ð7Þ

2.2.2. KPCA Based Regression
The centered multiple linear regression in the feature space is

given by

y0 ¼ Wcþ ~e ð8Þ

where c ¼ c1 c2 � � � cPF

� �T is a vector of regression coefficients
in the feature space, ~e is a vector of random errors and
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