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a b s t r a c t

This paper proposes a clustering asset allocation scheme which provides better risk-adjusted portfolio
performance than those obtained from traditional asset allocation approaches such as the equal weight
strategy and the Markowitz minimum variance allocation. The clustering criterion used, which involves
maximization of the in-sample Sharpe ratio (SR), is different from traditional clustering criteria reported
in the literature. Two evolutionary methods, namely Differential Evolution and Genetic Algorithm, are
employed to search for such an optimal clustering structure given a cluster number. To explore the clus-
tering impact on the SR, the in-sample and the out-of-sample SR distributions of the portfolios are stud-
ied using bootstrapped data as well as simulated paths from the single index market model. It was found
that the SR distributions of the portfolios under the clustering asset allocation structure have higher
mean values and skewness but approximately the same standard deviation and kurtosis than those in
the non-clustered case. Genetic Algorithm is suggested as a more efficient approach than Differential Evo-
lution for the purpose of solving the clustering problem.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Generally speaking, traditional asset allocation strategies can be
classified into two categories: parametric approaches (e.g. the
Markowitz allocations); and parameter-free allocations (e.g. the
equal weight strategy). According to the well-known Markowitz
theory, rational investors should always prefer the ‘efficient’ port-
folios which yield the highest return at any given risk level.
However, most of the time, a precise estimation of asset return
properties (such as expected return, variance and covariance)
may be difficult to obtain. As empirically observed financial data
is quite noisy, the estimates derived from such data may be unre-
liable. Moreover, the accuracy of estimates may rely on not only
the number of assets but also the available number of observations,
which is particularly important to the Markowitz allocations. If a
portfolio contains hundreds of assets, the high dimensionality
may hinder an accurate estimation of the dependency structure
of assets (i.e. covariance under the Markowitz framework), which
in the literature is usually referred to as the ‘curse of dimensional-
ity’. The above problems may result in suboptimal portfolios if
investors still apply the traditional asset allocations to manage
portfolios, especially large ones. For instance, the Sharpe ratio

(SR) of portfolios, which is a risk-adjusted performance measure
based on the first two moments of returns, may not be optimal.

Many researchers have suggested different approaches for
improving the estimation of return moments and portfolio perfor-
mance. For example, Harris and Yilmaz (2007) combined the
return-based and the range-based measures of volatility to improve
the estimate of the multivariate conditional variance–covariance
matrix. On the other hand, one may simply adopt parameter-free
allocations (e.g. the equal weight (EW) investment strategy of
Windcliff & Boyle (2004)) which are independent of those return
moment measures. In addition to methods from mathematics and
finance, approaches from computer science have also been consid-
ered by researchers. For instance, Pattarin, Paterlini, and Minerva
(2004) employed a clustering technique to analyze mutual fund
investment styles; and Lisi and Corazza (2008) proposed an active
fund management strategy which selected stocks after clustering
equities. The clustering techniques considered in the above studies
still comply with the traditional clustering criterion, i.e. minimizing
the dissimilarity between the cluster members while maximizing
the dissimilarity between clusters.

This study, however, proposes a different clustering criterion to
the traditional one. The proposed clustering criterion segments
assets by maximizing the in-sample SR of portfolios. Two main
benefits are expected from using this clustering asset allocation
scheme. First, the dimensionality in the asset allocation problem
will decrease, as the cluster size can be controlled by using a car-
dinality constraint. Thus, when portfolio managers apply the
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Markowitz allocations to managing large portfolios, the ‘curse of
dimensionality’ problem may be avoided. Secondly, the out-of-
sample SR of a portfolio which is constructed under the clustering
structure shall be better than the portfolio SR in the non-clustered
case by using a same asset allocation.

Provided there is no structural break between the in-sample
and the out-of-sample periods and the clustering structure is opti-
mal, one should observe the same clustering impact on both the in-
sample and out-of-sample SRs. The first four moments of the SR
distribution are considered in order to study the clustering impact
on the SR; and a rational investor should prefer the SR distributions
with high mean, high skewness, low standard deviation and low
kurtosis. To construct the SR distribution, simulated portfolio re-
turns are first generated by using the portfolio weights based on
simulated asset returns, and then the simulated SR values which
are calculated from the portfolio returns constitute the SR distribu-
tion. In this study, the EW strategy and the Markowitz minimum
variance portfolio (MVP) allocation are adopted to distribute asset
weights; and two approaches are used to provide the simulated as-
set returns for both the in-sample and out-of-sample SR studies,
i.e. the traditional bootstrap method and the single index market
model.

The proposed clustering asset allocation scheme is introduced
starting with the following technical terms. Assets within a cluster
are called ‘cluster members’, the portfolio which is constructed by
using the members in the same cluster is referred to as a ‘cluster
portfolio’, and these cluster portfolios are combined to form a ‘ter-
minal portfolio’. In other words, the proposed approach first of all
segments assets into a series of disjoint clusters according to the
clustering structure. Next, a set of cluster portfolios is constructed
by using an asset allocation on the basis of the cluster members in
different clusters. Finally, the terminal portfolio is constructed by
adopting the same asset allocation based on those cluster portfo-
lios. Two population-based evolutionary methods (Differential
Evolution and Genetic Algorithm) are used to tackle the clustering
problem with the SR maximization design. Fig. 1 briefly describes
this clustering asset allocation procedure in a case of three clusters
with eleven assets.

The paper is organized as follows. Sections 2 and 3 introduce
the clustering optimization problem and the two asset allocation
approaches. Section 4 describes the two evolutionary algorithms
for tackling the clustering problem. The experimental results are
presented and discussed in Section 5. Section 6 concludes the
study.

2. The optimization problem

Suppose there are N stocks considered for the asset allocation
problem. The optimization problem is to identify a clustering
structure C (i.e. a union of subsets C1; C2; . . . ; CG), so that the portfo-
lio SR based on such a cluster structure is maximized given a clus-
ter number G. In this study the cluster number G is manually
assigned, and G is an integer number within a range 1 6 G 6 N as
empty clusters are not considered. When G is equal to the number
of either 1 or N, there is no clustering effect thus the clustering
asset allocation problem becomes an ordinary asset allocation
problem. The optimization objective of the clustering problem
can be described as

max
C

SR ¼ rP � rf

rP
; ð1Þ

where C denotes the optimal clustering structure, rP is the average
daily return of the portfolio, rP is the standard deviation of the port-
folio return over the evaluation period, and rf refers to as the risk-
free return. As with traditional clustering problems, the union of
segmented assets U represents the collection of assets, and there
is no intersection between two different clusters. Let Cg denote
the gth cluster of assets, then the above constraints can be written
as

[G
g¼1

Cg ¼ U; ð2Þ

Cg \ Ch ¼ ;; g – h: ð3Þ

Let eNmin and eNmax denote the minimum and maximum asset num-
bers allowed in a cluster respectively, then the following cardinality
constraints are employed to limit the dimensionality of clusters:

eNmin
6

XN

j¼1

Ij2Cg 6
eNmax 1 6 g 6 G; ð4Þ

where Ij2Cg ¼
1 if j 2 Cg ;

0 otherwise;

�
ð5Þ

with
eNmin ¼ d N

2Ge;eNmax ¼ d3N
2Ge:

(
ð6Þ

Eq. (5) corresponds to an indicator function showing whether asset j
belongs to cluster g. The above optimization problem is hard to
solve by using traditional optimization methods. Brucker (1978)
pointed out that the clustering problem turns out to be non-deter-
ministic polynomial-time hard (NP-hard) when the cluster number
G becomes higher.

3. Asset allocation methods

3.1. Weight constraints

As with traditional asset allocation problems, the budget con-
straint must be met while using the proposed clustering asset allo-
cation. The sum of cluster member weights in a cluster should be
equal to 1, and likewise the sum of cluster portfolio weights. As
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Fig. 1. Procedure for the clustering asset allocation.
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