
Comparative performance analysis of various binary coded PSO algorithms
in multivariable PID controller design

Muhammad Ilyas Menhas ⇑, Ling Wang, Minrui Fei, Hui Pan
School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China

a r t i c l e i n f o

Keywords:
PID control
Swarm intelligence
Binary PSO
Particle swarm optimization
PID tuning

a b s t r a c t

In this paper, comparative performance analysis of various binary coded PSO algorithms on optimal PI
and PID controller design for multiple inputs multiple outputs (MIMO) process is stated. Four algorithms
such as modified particle swarm optimization (MPSO), discrete binary PSO (DBPSO), modified discrete
binary PSO (MBPSO) and probability based binary PSO (PBPSO) are independently realized using MATLAB.
The MIMO process of binary distillation column plant, described by Wood and Berry, with and without a
decoupler having two inputs and two outputs is considered. Simulations are carried out to minimize two
objective functions, that is, time integral of absolute error (ITAE) and integral of absolute error (IAE) with
single stopping criterion for each algorithm called maximum number of fitness evaluations. The simula-
tion experiments are repeated 20 times with each algorithm in each case. The performance measures for
comparison of various algorithms such as mean fitness, variance of fitness, and best fitness are computed.
The transient performance indicators and computation time are also recorded. The inferences are made
based on analysis of statistical data obtained from 20 trials of each algorithm and after having compar-
ison with some recently reported results about same MIMO controller design employing real coded
genetic algorithm (RGA) with SBX and multi-crossover approaches, covariance matrix adaptation evolu-
tion strategy (CMAES), differential evolution (DE), modified continuous PSO (MPSO) and biggest log mod-
ulus tuning (BLT). On the basis of simulation results PBPSO is identified as a comparatively better method
in terms of its simplicity, consistency, search and computational efficiency.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Despite numerous advancements in process control methodolo-
gies, Proportional–Integral–Derivative (PID) control is still the most
efficient and widely used feedback control strategy. This is due to its
simplicity and satisfactory control performance. PID controller was
introduced in 1910 and its use and popularity had grown particu-
larly after the Ziegler–Nichols empirical tuning rules in 1942
(Åström & Hägglund, 2001; Ziegler & Nichols, 1942). The develop-
ment in artificial intelligence and digital technology have resulted
in many intelligent control schemes such as fuzzy logic control
(Goshal, 2004; Lee, 1990), neural network control (Fukuda &
Shibata, 1992) and adaptive control (Astrom & Wittenmark, 1995;
Zuo, 1995). But no other technique could replace PID algorithm
and more than 90% of industrial controllers are still based on PID
control (Ang, Chang, & Li, 2005). The wide use of PID control has sus-
tained research on finding the key methodology for PID tuning to ob-
tain best possible performance out of the PID control (Marsh, 1998).

The optimally combined three terms functioning of PID control-
ler can provide treatment for both the transient and steady state

responses. In fact, optimal control performance can only be
achieved after identifying the finest set of three gains, that is, pro-
portional gain (Kp), integral gain (Ki) and derivative gain (Kd). Many
approaches have been reported in literature for tuning parameters
of PID controller. The conventional PID tuning techniques include
Z–N, Cohen Coon, and relay feedback methods (Cohen & Coon,
1953; Ziegler & Nichols, 1942). The modern techniques are based
on artificial intelligence techniques such as neural network, fuzzy
logic and evolutionary computation; these are the most recent
techniques (Astrom & Hagglund, 1995).

Recently, many attempts have been made by several research-
ers to tune the PID controller parameters using various EAs, such
as genetic algorithm (GA), covariance matrix adaptation evolution
strategy (CMAES), particle swarm optimization (PSO), differential
evolution (DE), tribes algorithm (TA), ant colony optimization
(ACO), and discrete binary particle swarm optimization (DBPSO)
(Bingul, 2004; Chang, 2007, 2009; Chen, Cheng, & Lee, 1995;
Coelho & Bernert, 2009; Duan, Wang, & Yu, 2006; Gaing, 2004;
Jan, Tseng, & Liu, 2008; Kim, Maruta, & Sugie, 2008; Menhas,
Wang, Fei, & Ma, 2011; Mukherjee & Goshal, 2007; Wang, Zhang,
& Wang, 2006; Willjuice & Baskar, 2009, 2010; Zhang, Zhuang,
Du, & Wang, 2009; Zuo, 1995) for both the single and multi-
variable processes.

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.09.152

⇑ Corresponding author. Tel.: +86 15821107474.
E-mail address: ilyasminhas75@yahoo.com (M.I. Menhas).

Expert Systems with Applications 39 (2012) 4390–4401

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2011.09.152
mailto:ilyasminhas75@yahoo.com
http://dx.doi.org/10.1016/j.eswa.2011.09.152
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


AI-based evolutionary computational techniques can determine
the most optimal sets of controller gains based on a given objective
function in an iterative manner from thousands of possible alter-
nate solutions that best fit the designer’s requirements. But the
performance of different methods may significantly vary in differ-
ent applications. In Willjuice and Baskar (2009) comparative per-
formance analysis of various EAs such as real coded genetic
algorithm (RGA) with SBX crossover, differential evolution (DE),
modified particle swarm optimization (MPSO) and covariance ma-
trix adaptation evolution strategy (CMAES) was done and better
performance of CMAES and MPSO in comparison to BLT, RGA with
SBX and multi-crossover approaches, was reported in the paper.
The MPSO algorithm is a variant of real coded particle swarm opti-
mization algorithm.

The particle swarm optimization algorithm (PSO) was intro-
duced by Kennedy and Eberhart (1995) by simulation of swarms
behavior in performing their tasks. The PSO has several advantages,
it works by maintaining a population of solutions and hence allows
for parallel evaluations of several solutions, it does not require that
the optimization problem must be differentiable and comprises
very simple mathematics. The PSO’s simplicity and capability of
solving very difficult problems have motivated many researchers
for its further development. Some recent developments can be
seen in Baskar and Suganthan (2004), Zhao and Suganthan
(2009), Van den Bergh and Engelbrecht (2004) and Zhan et al.
(2009).

Although continuous PSO and most of its variants have been
successfully applied in many real-world engineering applications,
it is widely held that PSO gets trapped in local optima. Further-
more, many of proposed strategies to deal with the weaknesses
of continuous PSO algorithm have significantly increased the com-
putational costs.

In 1997, Kennedy and Eberhart further extended the continuous
PSO algorithm to deal with the combinatorial optimization prob-
lems and proposed a discrete binary version of PSO. Unlike contin-
uous PSO, the discrete version of PSO (DBPSO) uses binary bits to
represent each dimension of particle position vector. The binary
coded PSO algorithm can cover a wide range of applications as bin-
ary sequences can be transformed to match the requirements of
any problem space.

With the purpose of finding a suitable tuning technique, this pa-
per is focused on the performance evaluation of various binary
coded PSOs such as DBPSO, MBPSO, and PBPSO algorithms on opti-
mal design of multivariable PI and PID controllers with and with-
out decoupling of process described by Wood and Berry (1973),
Chang (2007) and Willjuice and Baskar (2009) which is considered
as a case study for the MIMO tuning problem.

In addition, the comparative performance analysis of computa-
tional techniques is useful in updating and integrating current
developments for further research and development.

The remaining paper is organized as follows: Section 2 de-
scribes various methods under consideration, Section 3 illustrate
implementation of proposed methods, Section 4 details experi-
ments and simulation results, finally conclusions are drawn in Sec-
tion 5.

2. Techniques

This section briefly explains the PSO and some binary PSO
variants.

2.1. Particle swarm optimization (PSO)

The PSO was introduced by Kennedy and Eberhart by simulat-
ing social behavior of birds flocks in 1995 (Kennedy & Eberhart,

1995). It works by having a group of m particles. Each particle
can be considered as a candidate solution to an optimization prob-
lem and it can be represented by a point or a position vector xij =
[xi1, . . .,xid] in a d dimensional search space which keeps on moving
toward new points in the search space with the addition of a veloc-
ity vector vij = [vi1, . . .,vid] to further facilitate the search procedure.
The initial positions and velocities of particles are random from a
normal population u 2 [0,1]. All particles move in the search space
to optimize an objective function f(x). Each member of the group
gets a score after its evaluation on objective function f(x); the score
is regarded as a fitness value. The member with the highest score is
called global best. Each particle memorizes its previous best posi-
tions. During the search process all particles move toward the
areas of potential solutions by utilizing the cognitive and social
learning components. The process is repeated until any prescribed
stopping criterion is reached. After any iteration, each particle up-
dates its position and velocity to achieve better fitness values
according to the following Eqs. (1) and (2)

Vijðtþ1Þ ¼w �VijðtÞþ c1 � r1ðpijðtÞ� xijðtÞÞþ c2 � r2ðg1jðtÞ� xijðtÞÞ ð1Þ
xijðtþ1Þ ¼ Vijðtþ1Þþ xijðtÞ ð2Þ

where c1, c2 are two constants, called acceleration factors; w is iner-
tia weight; V(t) is velocity of each particle during iteration t; x(t) is
current position of particle at iteration t; p(t) is previous best posi-
tion of each particle till t; g(t) is the position of the best particle in
the group; r1, r2 are two quasi random numbers u 2 [0,1]; t is the
current iteration time or index.

The pseudo code of PSO algorithm for the multivariable PID
controller design is provided in Fig. 1.

2.2. Discrete binary PSO (DBPSO) algorithm

Kennedy and Eberhart introduced a discrete version of the PSO
aiming to deal with combinatorial optimization problems. In dis-
crete binary PSO (DBPSO) (Kennedy & Eberhart, 1997), particle po-
sition vector is represented by a binary string with each
component of this vector bounded to have a value either one or
zero. In DBPSO, velocity update rule Eq. (1) of the PSO was pre-
served, however, it was considered as a pseudo probability for
any component of position vector to take a value in the binary do-

Fig. 1. Pseudo code of PSO for multivariable PID controller design.

M.I. Menhas et al. / Expert Systems with Applications 39 (2012) 4390–4401 4391



Download English Version:

https://daneshyari.com/en/article/385233

Download Persian Version:

https://daneshyari.com/article/385233

Daneshyari.com

https://daneshyari.com/en/article/385233
https://daneshyari.com/article/385233
https://daneshyari.com

