Thulium laser treatment for bladder cancer

Wei Wang, Haitao Liu*, Shujie Xia*

Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Received 27 February 2016; received in revised form 11 May 2016; accepted 17 May 2016
Available online 25 May 2016

Abstract Recent innovations in thulium laser techniques have allowed application in the treatment of bladder cancer. Laser en bloc resection of bladder cancer is a transurethral procedure that may offer an alternative to the conventional transurethral resection procedure. We conducted a review of basic thulium laser physics and laser en bloc resection procedures and summarized the current clinical literature with a focus on complications and outcomes. Literature evidence suggests that thulium laser techniques including smooth incision, tissue vaporization, and en bloc resection represent feasible, safe, and effective procedures in the treatment of bladder cancer. Moreover, these techniques allow improved specimen orientation and accurate determination of invasion depth, facilitating correct diagnosis, restaging, and re-evaluation of the need for a second resection. Nonetheless, large-scale multicentre studies with longer follow-up are warranted for a robust assessment. The present review is meant as a quick reference for urologists.

© 2016 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bladder cancer is the 11th most commonly diagnosed cancer worldwide. Approximately 75% of patients with bladder cancer present with non-muscle-invasive bladder cancer (NMIBC), confined to the mucosa (stage Ta, carcinoma in situ) or submucosa (stage T1) [1]. Transurethral resection of bladder tumor (TURBT) remains the gold standard treatment for bladder cancer. However, this type of procedure is associated with a significant risk of residual tumors, which are often under-staged after initial TURBT. According to the guidelines [1], persistent disease after resection of T1 tumors has been observed in 33%–55% of patients, and after resection of Ta Grade 3 tumor in 41.4%. The likelihood that muscle-invasive disease is detected by second resection of initially T1 tumor ranges from 4% to 25%, and it increases to 45% if there was no muscle in the initial resection. While complete and correct tumor resection is crucial to achieve a good prognosis, conventional

* Corresponding authors.
E-mail addresses: doctorlht69@163.com (H. Liu), xsjurologist@163.com (S. Xia).
Peer review under responsibility of Second Military Medical University.
TURBT results in greater risk of recurrence. In order to overcome the limitations of conventional TURBT, various modifications of standard resection techniques have recently been developed. An important development is represented by transurethral thulium laser en bloc resection of bladder tumor (ThuLEBT), along with a catalogue of techniques based on other lasers, such as holmium laser (Ho:YAG) vaporization or en bloc resection of bladder tumor [2,3].

Although various laser types have been used in the treatment of bladder cancer, holmium and thulium lasers are most frequently employed. Similar results have been reported for both types of lasers with respect to feasibility, safety, and effectiveness in comparison with TURBT. However, the continuous beam of the thulium laser does not exhibit the tissue-tearing effect of the pulsed emissions of Ho:YAG, which is likely. This might be the reason for the exclusive application of the thulium laser for en bloc resection, while no application has been reported for vaporization of bladder cancer [4]. Thus, in the present review, we focused on ThuLEBT, a state-of-the-art technique for minimally invasive treatment of bladder tumors.

2. Technological and procedural details

2.1. Thulium laser

The thulium laser is a continuous wave that emits at a wave length of approximately 1927 nm. Its physical properties and effect on various tissues are virtually identical to those of the Ho:YAG, but with an even shallower depth (0.25 mm) of tissue penetration [5]. Due to the pattern of the continuous wave, the thulium laser allows smooth incision and vaporization of tissues with excellent efficiency [6]. Thulium laser devices with shallow penetration and power settings that can be adjusted according to tumor size provide relatively clear vision and satisfactory haemostatic effect during the operation. Under these circumstances, thulium laser-based techniques allow en bloc resection and ablation for the management of bladder tumors [7].

2.2. Thulium laser operation procedure

Several studies have reported on the operating procedure for the treatment of bladder cancer. Thulium lasers are usually generated using a 2-μm laser system (LISA laser products OHG, Katlenburg-Lindau, Germany) with a 2013-nm laser fibre. Laser energy can be delivered in continuous mode via a 550-μm fibre with a power of 5–15 W or 30–50 W, through a 24 Fr or 26 Fr 30-degree continuous flow endoscope [6,8–10].

Once the laser starts to operate, the laser fibre is held at a safety margin of 2–5 mm away from the tumor, which is sufficient for the laser energy to instantly vaporize the tumor. The efficiency of vaporization is proportional to the laser power, though using higher power does not lead to an increase in complication rates [3]. In order to complete the en bloc resection and obtain an adequate specimen, it has been suggested that, after finishing the surrounding line, the operation should proceed with a transurethral resection, to expose the base of the tumor up to the deeper layers, until the detrusor muscle is exposed; finally, the bladder wall is dissected via blunt laser incision. Larger tumors (size >3 cm) can be removed through the base of the bladder wall after being cut into two or three pieces. Saline irrigation is used throughout the procedure [6,8,11,12].

Once the tumors are removed, random, cold-cut biopsy specimens are taken from the tumor base and from an area within 2 cm of the tumor edge; the biopsy specimens must be harvested from areas which have adequately coagulated or been vaporized using laser energy, after removing the surrounding muscle layer.

3. Clinical outcomes

To assess the clinical outcomes associated with ThuLEBT, the present review noted the reported operative duration, perioperative complications, and tumor recurrence.

3.1. Operation time and complications

Based on the systematic review and meta-analysis regarding the management of NMIBC, Bai et al. [3] found no significant difference between thulium laser treatment and TURBT or Ho:YAG treatment with respect to operation time or hospitalization duration (mean difference: −0.69 h; 95% confidence interval (CI): −1.62–0.24 h; p = 0.14). However, Zhang et al. [11] and Chen et al. [13] found that operation time was significantly lower for patients undergoing TURBT than for those undergoing ThuLEBT (28.43 min vs. 31.5 min, p = 0.044; 56.5 min vs. 41.0 min, p = 0.017; respectively), which may have been due to the additional time required for the thulium laser to achieve a precise resection of the anterior wall of large tumors. Migliari et al. [12] reported a mean operative time of 25 min (range, 12–30 min) for resection of a single papillary tumor with a diameter of 2.5 cm (range, 0.5–4.5 cm), regardless of tumor location. For multiple NMIBCs, Liu et al. [8] found the mean operation time was 48 min per patient (range, 20–90 min), and 13.6 min per tumor (range, 5–25 min), the mean number and diameter of tumors were 3 cm (range, 2–5 cm) and 1.2 cm (range, 0.3–2.5 cm), respectively.

With respect to intra- and post-operative complications, Bai et al. [3] performed a systematic meta-analysis of seven studies and found that ThuLEBT was better than TURBT. Specifically, significant differences were observed between the group of patients treated by ThuLEBT and the group of patients treated by TURBT, with respect to obturator nerve reflex (risk ratio: 0.07; 95%CI: 0.02–0.23; p < 0.0001), bladder perforation (risk ratio: 0.16; 95%CI: 0.05–0.54; p = 0.003), bladder irrigation (risk ratio: 0.36; 95%CI: 0.19–0.69; p = 0.002), and duration of the catheterization (mean difference: −1.26 min; 95%CI: −1.79–(−0.73) min; p < 0.00001). Indeed, complications after ThuLEBT have been described in only five studies, with a total of 355 patients. Specifically, bladder perforation in conjunction en bloc resection was described in two studies, urethral stricture was described in two studies, and anterior urethral injury caused by transurethral resection was described in one study. The overall complication rate was 1.4%, and none of the complications were life-threatening. Acute peri- and