

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.hkjn-online.com

CASE REPORT

Renal outcome with eculizumab in two diarrhea-associated hemolytic—uremic syndrome cases with severe neurologic involvement

Zelal Ekinci ^{a,*}, Kenan Bek ^a, Mehmet Baha Aytac ^a, Aynur Karadenizli ^b, Veysel Sabri Hancer ^c

Received 8 November 2013; received in revised form 3 July 2014; accepted 30 July 2014 Available online 11 October 2014

KEYWORDS

children;
eculizumab;
neurologic
involvement;
renal disease;
Shiga toxin-producing
Escherichia coliassociated
hemolytic—uremic
syndrome

Summary The kidney and brain are the two target organs in patients with Shiga toxin-producing *Escherichia coli*-associated hemolytic—uremic syndrome (STEC-HUS). Activation of the alternative complement pathway occurs in patients with STEC-HUS. A monoclonal antibody (eculizumab) directed against C5 has been reported to be effective against severe neurologic involvement in patients with STEC-HUS. We report on two STEC-HUS children with severe neurologic involvement treated with eculizumab. Despite prompt resolution of initial neurologic findings upon treatment with eculizumab, proteinuria and hypertension persisted in these patients. The persistence of these two risk factors is particularly emphasized to discuss the long-term effects of eculizumab, especially on renal involvement.

產志賀毒素大腸桿菌相關溶血性尿毒症候群 (STEC-HUS) 的目標器官包括腎臟及腦部,在患者體內會出現補體替代途徑的活化。有報告指出,對於 STEC-HUS 所表現的重度神經學併發症,C5單株抗體 (eculizumab) 具有若干效用。以下兩宗兒童個案,均為兼具重度神經學併發症的 STEC-HUS,且接受了 eculizumab 治療。治療期間神經學方面出現迅速改善,然而仍持續有蛋白尿及高血壓情形,因此必須注意 eculizumab 的長期影響特別是腎臟效應。

E-mail addresses: zekinci@outlook.com, zbircan@kocaeli.edu.tr (Z. Ekinci).

^a Department of Pediatric Nephrology, School of Medicine, Kocaeli University, Kocaeli, Turkey

^b Department of Medical Microbiology, School of Medicine, Kocaeli University, Kocaeli, Turkey

^c Department of Medical Biology and Genetics, School of Medicine, Istanbul Bilim University, Istanbul, Turkey

^{*} Corresponding author. Kocaeli University Hospital, Department of Pediatric Nephrology, School of Medicine, Kocaeli University, 41380 Umuttepe, Kocaeli, Turkey.

STEC-HUS and eculizumab 47

Introduction

The recent outbreak of *Escherichia coli* O104:H4 (EHEC O104:H4) in Germany in May 2011 provided a great deal of new information for the management of Shiga toxin-producing *E. coli*-associated hemolytic—uremic syndrome (STEC-HUS) patients, especially for severely infected cases. $^{1-3}$ The prompt resolution of neurologic findings in STEC-HUS patients upon treatment with eculizumab right at the peak of that outbreak had been reported from Canada. 4 A total of 328 patients and 13 children were treated with eculizumab during the outbreak in Germany. 1,2 There was also a limited outbreak of diarrhea-associated hemolytic—uremic syndrome (D + HUS) in Turkey in 2011. 5 We had some experience in treating patients with eculizumab during that outbreak, and would like to discuss two of them from our experience to demonstrate the effectiveness of the drug and its safety.

Case reports

Case 1

A 9.5-year-old girl presented with visual hallucinations, lethargy, vomiting, and abdominal pain 3 days after experiencing watery diarrhea. The patient had watery diarrhea with vomiting that lasted for 2 days. Her urine output was decreased in the past 2 days and she was apathetic and hallucinating since that morning. On physical examination she had tremor in her hands, altered consciousness, and confusion with normal blood pressure (100/60 mmHg, <95th percentile). Based on low platelet count (88.2 \times $10^3/\mu$ L), low haptoglobin level $(<8\,mg/dL)$, fragmented erythrocytes in the blood smear, and high creatinine (5.02 mg/dL) and lactate dehydrogenase (LDH; 2902 U/L) levels, D + HUS was diagnosed. Leukocytosis was also present (21.6 \times 10³/ μ L). Complement C₃ level was normal (93 mg/dL). E. coli O157:H7 serotype was isolated from her stool culture and polymerase chain reaction (PCR) detected Shiga toxin 2. The patient received plasma exchange (PE) therapy with a dose of 60 mL/kg fresh frozen plasma—five times initially on a daily basis and five times/week for the following 2 weeks together with hemodialysis. However, neurological disturbance including somnolence and hallucinations persisted. Because magnetic resonance imaging (MRI) device was temporarily unavailable at that time, noncontrast tomography was performed for cranial imaging and the result was normal. On the 19th day of hospitalization during the 15th PE session, the patient complained of blindness and then developed a generalized tonic-clonic convulsion and became unconscious. Her blood pressure, plasma calcium level (9.6 mg/dL), and electrolytes were within normal limits. Because of extreme agitation, midazolam infusion together with 2 L/minute oxygen was administered. She was vaccinated immediately against Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae infections (all at the same time) and a prophylactic antibiotic was prescribed. Eculizumab therapy (Soliris; Alexion Pharmaceuticals, Cheshire, CT, USA) was initiated immediately on the day of convulsion at a weekly dose of 600 mg for 3 weeks. Just before the eculizumab infusion was started, her hemoglobin level (9.05 g/dL), platelet count (246 \times 10³/ μ L), and LDH level (280 IU/L) were stable but she was still anuric.

Following the first dose of eculizumab, the patient's neurological condition improved dramatically within 48 hours; however, anuria slowly resolved over 6 days after the first eculizumab infusion. The course of the laboratory findings are shown in Fig. 1 (Case 1). Nephrotic-range proteinuria (45.78 mg/m²/hour) and diminished renal functions **[estimated]** glomerular filtration rate (eGFR): 44.93 mL/minute/1.73 m²] persisted on the 90th-day visit. The patient was hypertensive, and thus required treatment with ramipril. At the end of 1st year of treatment, her serum creatinine level was still above the normal limits (1.08 mg/dL, eGFR: 63.65 mL/minute/1.73 m²) and mild proteinuria was recorded (13.82 mg/m²/hour). The patient's blood pressure was under control with ramipril treatment. An analysis of factor I, H, and MCP genes did not identify any mutation.

Case 2

A 20-month-old girl was admitted with altered consciousness. She had a history of watery diarrhea for 4 days, which was treated with ceftriaxone. On the 4th day, the patient developed altered consciousness, weakness, and convulsion. An initial examination revealed an unconscious and pale child with normal blood pressure (90/60 mmHg, <95th percentile). Based on low platelet count (89.10 \times 10³/ μ L), fragmented red blood cells in the blood smear, low hemoglobin (8.84 g/ dL), low haptoglobin (<8 mg/dL), high creatinine (6.46 g/dL), and high LDH (2934 U/L) levels, D + HUS was diagnosed. Complement C₃ level was 75 mg/dL (90-180). During admission in the emergency department, her serum sodium level was 120 mEg/L and she was treated with 3% NaCl to control convulsions. In 48 hours, her serum sodium level was increased to 135 mEq/L and her consciousness was normal. Peritoneal dialysis (PD) was initiated on the day of admission. Neither Shiga toxins 1 and 2 could be shown with PCR nor could enterohemorrhagic E. coli be isolated from the stool, possibly because of the previous ceftriaxone treatment. On the 4th day of hospitalization while her serum sodium level was 137 mEg/L and blood pressure was normal, she presented with altered consciousness and dystonic movements. MRI revealed diffusion restriction in the right hemisphere. Laboratory evaluation on that day revealed the following measurements: hemoglobin, 7.79 g/dL; platelets, 95.20×10^3 / μL; LDH, 3254 U/L; creatinine, 7.83 mg/dL; and haptoglobin level <8 mg/dL. The course of the laboratory findings is shown in Fig. 1 (Case 2). She was still anuric and thus PD was continued. Because of the difficulties involved in initiating PE therapy for infants and a previous report demonstrating the effectiveness of eculizumab in STEC-HUS patients with neurologic involvement, treatment with eculizumab was initiated at a dose of 600 mg/week for the 1st week on the day of altered consciousness and dystonic movements. The treatment was continued at a dose of 300 mg/week for the 2nd week and 300 mg every 2 weeks from the 3rd week onward. Vaccination against H. influenzae and S. pneumoniae infections was performed as previously described. Vaccination against N. meningitidis infections was performed immediately prior to treatment with eculizumab and prophylactic antibiotics were prescribed. Recovery of consciousness and dystonic movements were observed after 48 hours. Platelets increased immediately on the 1st day.

Download English Version:

https://daneshyari.com/en/article/3853975

Download Persian Version:

https://daneshyari.com/article/3853975

<u>Daneshyari.com</u>