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a b s t r a c t

Metamodeling technique is to represent the approximation of input variables and output variables. With
the exponential increase of dimension of assigned problems, accurate and robust model is difficult to
achieve by popular regression methodologies. High-dimensional model representation (HDMR) is a gen-
eral set of metamodel assessment and analysis tools to improve the efficiency of deducing high dimen-
sional underlying system behavior. In this paper, a new HDMR, based on moving least square (MLS),
termed as MLS-HDMR, is introduced. The MLS-HDMR naturally explores and exploits the linearity/non-
linearity and correlation relationships among variables of the underlying function, which is unknown or
computationally expensive. Furthermore, to improve the efficiency of the MLS-HDMR, an intelligent sam-
pling strategy, DIviding RECTangles (DIRECT) method is used to sample points. Multiple mathematical
test functions are given to illustrate the modeling principles, procedures, and the efficiency and accuracy
of the MLS-HDMR models with problems of a wide scope of dimensionalities.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the past two decades, approximation methods and approxi-
mation-based optimization have attracted intensive attention. This
type of approximation model is often termed as metamodel. A
metamodel is an approximation of the input/output (I/O) function
that is implied by the underlying simulation model. Metamodels
are fitted to the I/O data produced by the experiment with the sim-
ulation model. Metamodeling involves (a) choosing an experimen-
tal design for generating data, (b) choosing a model to represent
the data, and then (c) fitting the model to the observed data (Simp-
son, Peplinski, Koch, & Allen, 2001). Commonly used metamodeling
techniques recent year are listed in Table 1 summarized by Wang
and Shan (2007).

Although certain progress has been made to improve the effi-
ciency and accuracy of the metamodeling techniques, the present
state of metamodeling technique is that the most of low dimen-
sional problems can be done well approximation methodologies
(Shan & Wang, 2009). However, the major problem associated with
these models (e.g. RBF, polynomial, Kriging) or methodologies is
that the modeling effort or resource demand, in order to obtain
acceptable accuracy, grows exponentially with the dimensionality
of the black-box problems. Therefore, these popular techniques
would be inappropriate, or even prohibitive, for modeling high
dimensional problems. With the growing of the complexity and
dimension of real-life problems, high dimensional approximation

problems widely exist in various disciplines. High dimensional
black-box problems urgently need to be addressed.

A general set of quantitative model assessment and analysis
tool, termed high-dimensional model representation (HDMR), has
been introduced recently for high dimensional input–output sys-
tems. The HDMR is a particular family of representations where
each term in the representation reflects the independent and coop-
erative contributions of the inputs upon the output HDMR. This
method is based on optimization and projection operator theory,
which can dramatically reduce the sampling effort for learning
the IO behavior of high dimensional systems (i.e., a reduction of ef-
fort from exponential scaling to only polynomic complexity) (Li,
Rosenthal, & Rabitz, 2001; Li, Wang, Rosenthal, & Rabitz, 2001).
Therefore, the HDMR is potential for high dimensional problems.

In this paper, in order to conquer the bottleneck for highly
dimensional approximation problems, a HDMR coupled with local
approximate method, moving least square (MLS) is proposed,
termed as MLS-HDMR. We hope such combination can achieve ro-
bust and accurate model efficiently. Furthermore, to improve the
efficiency of the metamodeling procedure, an intelligent sampling
strategy, DIviding RECTangles (DIRECT) is integrated to generate
sample points in each iteration. Therefore, the proposed metamod-
eling technique is so called adaptive MLS-HDMR method.

The rest of this paper is organized as follows. Section 2 intro-
duces the theoretical bases including HDMR and MLS. Section 3
proposed adaptive-MLS-HDMR method. Performance metrics are
introduced in Section 4. In Section 5, various nonlinear high dimen-
sional mathematical functions are used to test the performance of
the proposed method. Section 6 gives conclusions finally.
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2. Theoretical bases

2.1. HDMR

HDMR is a general set of quantitative model assessment and
analysis tools for capturing the high dimensional relationships
between input variables and response functions. Let the N-dimen-
sional vector X ¼ ½x1; x2; . . . xN�T 2 RN with N which represents the
input variables of the assigned model, and the output function
f(X).

The HDMR expresses the response function f(X) as a hierarchical
correlated function expansion in terms of input variables as

f ðXÞ ¼ f0 þ
XN

i¼1

fiðxiÞ þ
X

1<i6j6N
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where f0 denotes a constant term representing the 0th order effect
to f(X). The function fi(xi) is a first-order term expressing the effect
of variable xi acting alone, although generally nonlinearly, upon the
output response f(X). The function fij(xi, xj) is a second-order term
that describes the cooperative effects of the variables xi and xj upon
the output response f(X). The higher order terms give the coopera-
tive effects of increasing numbers of input variables acting together
to influence the output f(X). The last term f12� � �N(x1,x2,. . .,xN) contains
any residual dependence of all input variables locked together in a
cooperative way to influence the output response f(X). Once all the
relevant component functions in Eq. (1) are determined, the compo-
nent functions constitute an HDMR, thereby replacing the original
computationally expensive method of calculating f(X) by the com-
putationally efficient model. Usually the higher order terms in Eq.
(1) are negligible such that the HDMR with only low order correla-
tions to second-order amongst input variables is typically used to
represent the behavior of output response. The HDMR expansion
has a finite number of terms 2N and is always exact. The HDMR dis-
closes the hierarchy of correlations among the input variables. Each
component function of the HDMR has distinct mathematical mean-
ing. At each new level of the HDMR, higher order correlated effects
of the input variables are introduced. While there is no correlation
term between input variables, only the constant component f0 and
the function terms fi(xi) will exist in the HDMR model. Furthermore,
it can be proved that f0 = f(X0) is the constant term of the Taylor ser-

ies; the first order function fi(xi) is the sum of all the Taylor series
terms which only contain variables xi, while the second order func-
tion fij(xi, xj) is the sum of all the Taylor series terms which only con-
tain variables xi and xj and so on. There are two particular HDMR
expansions: random sampling HDMR (RS-HDMR) and cut-HDMR.
The RS-HDMR is useful for measuring the contributions of the var-
iance of individual component functions to the overall variance of
the output, and this version is based on the mean value of f(X) over
entire domain. On the other hand, cut-HDMR expansion is an exact
representation of the output f(X) in the hyperplane passing through
a cut point in the design space. In this study, cut-HDMR algorithm is
used to construct metamodel. Using the cut-HDMR, a cut point Xc is
defined in the design space. In the convergence limit, cut-HDMR is
invariant to the choice of cut point Xc. In practice, Xc is chosen with-
in the neighborhood of interest in the design space. The response
function is determined by evaluating the I/O responses of the sys-
tem relative to the defined cut point Xc along associated lines,
planes and sub-volumes, etc. (i.e. cuts) in the design space. This pro-
cess reduces to the following relationship (Eqs. (2)–(6)) for the com-
ponent functions in Eq. (1).

f0 ¼ f ðXcÞ; ð2Þ
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where Xi
c , Xij

c , Xijk
c are respectively Xc without terms xi, xi, xj, and

xi, xj, xk. The higher order terms are evaluated as cuts in the design
space through the cut point. Therefore, each first-order term fi(xi) is
evaluated along its variable axis through the center point. Each sec-
ond-order term fij(xi, xj)is evaluated in a plane defined by the binary
set of input variables xi, xj through the cut point; etc. The process of
subtracting the lower order expansion functions removes their
dependence to assure a unique contribution from the new expan-
sion function.

If each input variable is sampled at s different values, the re-
quired number of model runs to construct the fi(xi), fij(xi, xj),. . .

can be obtained by

Table 1
Commonly used metamodeling techniques (Wang & Shan, 2007).

Experimental design/sampling methods Metamodel choice Model fitting

� Classic methods
– (Fractional) factorial
– Central composite
– Box-Behnken
– Alphabetical optimal
– Plackett-Burman
� Space-filling methods

– Simple grids
– Latin hypercube
– Orthogonal arrays
– Hammersley Sequence
– Uniform designs
– Minimax and MaximinHybrid

methods
� Random or humans selection
� Importance sampling
� Directional simulation
� Discriminative sampling
� Sequential or adaptive methods

� Polynomial (linear. quadratic, or higher)
� Splines (linear, cubic, NURBS)
� Multivariate adaptive regression splines

(MARS)
� Gaussian process
� Kriging
� Radial basis functions (RBF)
� Least interpolating polynomials
� Artificial neural network (ANN)
� Knowledge base or decision tree
� Support vector machine (SVM)
� Hybrid models

� (Weighted) Least squares regression
� Best linear unbiased predictor (BLUP)
� Best linear predictor
� Log-likelihood
� Multipoint approximation (MPA)
� Sequential or adaptive metamodeling
� Back propagation (for ANN)
� Entropy (inf.-theoretic. for inductive learning on decision

tree)
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