
Decision tree induction using a fast splitting attribute selection for large datasets

A. Franco-Arcega a,⇑, J.A. Carrasco-Ochoa a, G. Sánchez-Díaz b, J.Fco. Martínez-Trinidad a

a Computer Science Department, National Institute of Astrophysics, Optics and Electronics, Luis Enrique Erro #1, Santa Maria Tonantzintla, Puebla, C.P. 72840, Mexico
b Computational Science and Technology Department, University of Guadalajara, CUValles, Carretera Guadalajara-Ameca Km. 45.5, Ameca, Jalisco, C.P. 46600, Mexico

a r t i c l e i n f o

Keywords:
Decision trees
Large datasets
Gain-ratio criterion

a b s t r a c t

Several algorithms have been proposed in the literature for building decision trees (DT) for large datasets,
however almost all of them have memory restrictions because they need to keep in main memory the
whole training set, or a big amount of it, and such algorithms that do not have memory restrictions,
because they choose a subset of the training set, need extra time for doing this selection or have param-
eters that could be very difficult to determine. In this paper, we introduce a new algorithm that builds
decision trees using a fast splitting attribute selection (DTFS) for large datasets. The proposed algorithm
builds a DT without storing the whole training set in main memory and having only one parameter but
being very stable regarding to it. Experimental results on both real and synthetic datasets show that our
algorithm is faster than three of the most recent algorithms for building decision trees for large datasets,
getting a competitive accuracy.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Classification is an important task in data mining (Tan,
Steinbach, & Kumar, 2006). Currently, there are many classification
problems where large training datasets are available, therefore
there is a big interest for developing classifiers that allow handling
this kind of datasets in a reasonable time.

Decision trees (Quinlan, 1986, 1993) are commonly used for
solving classification problems in Machine Learning and Pattern
Recognition. A DT is formed by internal nodes, leaves, and edges,
and it can be induced from a training set of instances, each one rep-
resented by a tuple of attribute values and a class label. Internal
nodes have a splitting attribute and each node has one or more
children (edges). Each one of these children has associated a value
for the splitting attribute and these values determine the path to
be followed during a tree traversal. Each leaf has associated a class
label. In order to classify a new instance, the tree is traversed from
the root to a leaf, when the new instance arrives to a leaf it is clas-
sified according to the class label associated to that leaf.

Several algorithms have been developed for building DTs from
large datasets (Alsabti, Ranka, & Singh, 1998; Domingos & Hulten,
2000; Gehrke, Ramakrishnan, & Ganti, 1998, 2000, 1999; Mehta,
Agrawal, & Rissanen, 1996; Shafer, Agrawal, & Mehta, 1996; Yang,
Wang, Yang, & Chang, 2008; Yoon, Alsabti, & Ranka, 1999). How-
ever, almost all of them have spatial restrictions, because they have
to keep the whole training set in main memory and some other use
a representation of the attributes that requires more space than the

whole training set. On the other hand, in those algorithms without
spatial restrictions, the construction of the DT is based only on a
small subset, but for obtaining this subset additional time is
required, which could be too expensive for large training sets; or
the algorithms uses several parameters, which could be very
difficult to determine.

Having these drawbacks identified, this work introduces a new
algorithm for building DTs that solves these problems. Our
algorithm (DTFS) follows two main ideas for building DTs, it uses
a fast splitting attribute selection for expanding nodes (deleting
the instances stored in the expanded node after its expansion)
and processes all the instances of the training set in an incremental
way, therefore it is not necessary to store the whole training set in
main memory.

In the literature some new techniques to select splitting attri-
butes have been proposed (Berzal, Cubero, Marn, & Snchez, 2004;
Chandra & Paul Varghese, 2009; Ouyang, Patel, & Sethi, 2009),
however these techniques are not proposed for handling large
datasets, because some of them have to evaluate a lot of candidate
splits for choosing the best attribute, other use discretization
methods to deal with numerical attributes, and some other use
expensive techniques to expand nodes. On the other hand, several
algorithms for building DTs in an incremental way have been pro-
posed, such as ID5R (Utgoff, 1989), PT2 (Utgoff & Brodley, 1990), ITI
(Utgoff, 1994), StreamTree (Jin & Agrawal, 2003) and UFFT (Gama &
Medas, 2005), however these algorithms cannot handle large data-
sets either, because they need to keep the whole training set in
main memory for building the DT.

In this paper, we propose an algorithm that processes the train-
ing instances one by one, thus each training instance traverses the

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.05.087

⇑ Corresponding author. Tel.: +52 222 2663100x8311; fax: +52 222 2472580.
E-mail address: anifranco6@inaoep.mx (A. Franco-Arcega).

Expert Systems with Applications 38 (2011) 14290–14300

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2011.05.087
mailto:anifranco6@inaoep.mx
http://dx.doi.org/10.1016/j.eswa.2011.05.087
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

DT until a leaf is reached, where the training instance will be
stored. In our algorithm, when a leaf has stored a predefined num-
ber of instances (a parameter of the algorithm), it will be expanded
choosing a splitting attribute, using the instances in the leaf, and
creating an edge for each class of instances in the leaf. After
expanding a leaf, the instances stored in that leaf are deleted.
Experimental results over several large datasets show that our
algorithm is faster than three of the most recent algorithms for
building DTs for large datasets, obtaining a competitive accuracy.

The rest of the paper is organized as follows. Section 2 gives an
overview of the works related to DT induction for large datasets.
Section 3 introduces the DTFS algorithm, which allows building
DTs for large datasets. Section 4 provides experimental results
and a comparison against other algorithms for DT induction for
large datasets, on both real and synthetic datasets. Finally, Section
5 gives our conclusions and some directions for future work.

2. Related work

In this section, several algorithms that have been proposed to
build DTs for large datasets are described.

Mehta et al. (1996) presented SLIQ (Supervised Learning In
Quest), an algorithm for building DTs for large datasets. This algo-
rithm uses a list structure for each attribute, these lists are used in
order to avoid storing the whole training set in main memory, by
storing them in disk. However, SLIQ uses an extra list that must
be stored in main memory, this list contains the class of each in-
stance and the number of the node where this instance is stored
in the tree. This could be a problem for large datasets, because
the size of this list depends on the number of instances in the train-
ing set. The process that SLIQ follows to build a DT is similar to
C4.5, but the difference is that SLIQ uses the lists for splitting attri-
bute selection, therefore, the lists must be read from disk each time
a node is going to be expanded.

Shafer et al. (1996) presented an improvement of SLIQ, called
SPRINT (scalable parallelizable induction of decision trees). The dif-
ference with respect to SLIQ lies in how SPRINT represents the lists
for each attribute. SPRINT adds a column to each list for storing the
class of each instance, hence SPRINT does not need to store in main
memory any whole list. However, since SPRINT has to read from
disk all the lists for expanding each node, just like SLIQ, the run-
time is too large if the training set has a lot of instances.

Alsabti et al. (1998) proposed CLOUDS (Classification for Large
or OUt-of-core DataSets), an algorithm that uses, as SLIQ and
SPRINT, lists for representing the information of the attributes in
the training set. However, these lists are simplified representing
the numerical attributes by intervals. This modification substan-
tially reduces the time required for choosing the attributes that
will represent the internal nodes of the DT, because it is not needed
to check all the values for each attribute. A drawback of SPRINT and
CLOUDS is that for storing the lists they require at least the double
of the space needed for storing the original training set.

Gehrke et al. (1998), Gehrke, Ramakrishnan, and Ganti (2000)
introduced the Rainforest algorithm. It follows the idea of using
lists for representing the attributes of a training set, but this algo-
rithm only stores all the different values for each attribute. In this
way, Rainforest tries to reduce the size of the lists, thus the list size
will not be the number of training instances but the number of dif-
ferent values. However, these lists must be stored in main memory,
therefore if the attributes have a lot of different values in the train-
ing set, the available space could be not enough. Besides, in order
to generate the lists, in each level of the DT, Rainforest has to read
the whole training set twice and write it once, which is very expen-
sive for large datasets. Nguyen and Tae-Choong (2007) presents an
improvement of Rainforest, the difference is that this improvement

adds to the lists, used by Rainforest, the position of each instance in
the training set, in order to use them in the expansion of each node,
in this way this algorithm does not have to read twice and write
once the whole training set in each level of the tree. This algorithm
only scans once the whole training set, however if an attribute has
too many values, its lists may not fit in main memory.

Gehrke, Ganti, Ramakrishnan, and Loh (1999) developed an
incremental algorithm for building DTs, called BOAT (Bootstrapped
Optimistic Algorithm for Tree construction). This algorithm avoids
to store the whole training set in main memory by using only an
instance subset as training for building the DT, however obtaining
this subset requires additional time for building the DT, which
could be expensive for large datasets. Starting from this subset,
BOAT applies a bootstrapping technique for generating multiple
DTs, using a traditional main memory DT induction algorithm
(for example C4.5, CART, etc.). The constructed DTs are combined,
and finally, BOAT refines the combined DT using the whole training
set.

Yoon et al. (1999) proposed another incremental algorithm for
building DTs, called ICE (Incrementally Classifying Ever-growing
large datasets). This algorithm divides the training set in subsets,
called epochs, and processes them separately, therefore ICE does
not need to store the whole training set in main memory. ICE
builds a DT for each epoch using a traditional main memory DT
induction algorithm (as C4.5, CART, etc.) and from each DT, ICE ob-
tains a subset of instances applying a sampling technique. Then ICE
joins the subsets, obtained from each epoch, for building the final
DT. A DT Ti is built from each subset Di (epoch i) of the training
set, and using a sampling technique a set Si of samples is extracted
from Ti. The union of Si and the previous sets of samples are stored
in Ui. Then the new set of samples Ui = Ui�1 [Si is preserved for
building the DT in the next epoch. For a training set divided in k
epochs, ICE joins S1,S2, . . . ,Sk, the subsets of instances extracted
from T1,T2, . . . ,Tk, and builds the final DT Ck with the last Uk, the
algorithm preserves the subset Uk and the DT Ck. If a new epoch
Dk+1 must be processed, ICE builds Tk+1 from Dk+1, extracts Sk+1 from
Tk+1 and uses Uk+1 = Uk [Sk+1 for building the new DT, Ck+1. A draw-
back of ICE is that when the algorithm processes large training sets,
it spends a lot of time for obtaining the subset of instances for
building the final DT.

Domingos and Hulten (2000) introduced an incremental algo-
rithm called VFDT (very fast decision trees). This work proposed
the Hoeffding trees, which can be learned in constant time per in-
stance, and they are similar to the trees built by traditional main
memory DT induction algorithms (for example C4.5, CART, etc.).
For building the DT, VFDT needs the training instances in a random
order, if this is not the case, they should be randomized in a pre-
processing step. VFDT starts with a tree produced by a conven-
tional DT induction algorithm, this tree is built from a small
subset of instances, then VFDT processes each instance of the train-
ing set traversing the DT and updating the statistics needed to
compute the information gain of each attribute in the leaf in which
the instance arrives. VFDT uses a user-defined parameter nmin,
which indicates the minimum number of instances that must be
stored in a leaf before checking if the node has enough information
to be expanded. When n instances have arrived to a leaf, VFDT ob-
tains the information gain of each attribute using the statistics
stored in the leaf, chooses the two attributes with highest informa-
tion gain, G(Xa) and G(Xb), and obtains the Hoeffding bound e using
Eq. (1).

e ¼

ffi
R2 ln 1=dð Þ

2n

s
ð1Þ

In Eq. (1) R is log(c) (c is the number of classes) and d is a user-
defined parameter, where 1 � d indicates the probability of

A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300 14291

Download	English	Version:

https://daneshyari.com/en/article/385437

Download	Persian	Version:

https://daneshyari.com/article/385437

Daneshyari.com

https://daneshyari.com/en/article/385437
https://daneshyari.com/article/385437
https://daneshyari.com/

