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a b s t r a c t

In this paper, we present neurule-based inference and explanation mechanisms. A neurule is a kind of
integrated rule, which integrates a symbolic rule with neurocomputing: each neurule is considered as
an adaline neural unit. Thus, a neurule base consists of a number of autonomous adaline units (neurules),
expressed in a symbolic oriented syntax. There are two inference processes for neurules: the connection-
ism-oriented process, which gives pre-eminence to neurocomputing approach, and the symbolism-
oriented process, which gives pre-eminence to a symbolic backwards chaining like approach.
Symbolism-oriented process is proved to be more efficient than the connectionism-oriented one, in terms
of the number of required computations (56.47–63.88% average reduction) and the mean runtime gain
(59.95–64.89% in average), although both require almost the same average number of input values.
The neurule-based explanation mechanism provides three types of explanations: ‘how’ a conclusion
was derived, ‘why’ a value for a specific input variable was asked from the user and ‘why-not’ a variable
has acquired a specific value. As shown by experiments, the neurule-based explanation mechanism is
superior to that provided by known connectionist expert systems, another neuro-symbolic integration
category. It provides less in number (64.38–69.28% average reduction) and more natural explanation
rules, thus increasing efficiency (mean runtime gain of 56.65–56.73% in average) and comprehensibility
of explanations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the intelligent methods have advantages as well as
disadvantages. Research in artificial intelligence (AI) has shown
that approaches integrating (or combining) two or more intelligent
methods may provide benefits (Hatzilygeroudis & Prentzas, 2011a;
Tweedale & Jain, 2014). This is accomplished by exploiting the
advantages of the integrated methods to overcome their disadvan-
tages. Complementarity in advantages and disadvantages of the
combined methods is usually the basis to the success of such
integrations. Example types of popular integrations, among others,
involve neuro-symbolic approaches, integrating neural networks
with symbolic methods (Garcez D’Avila & Lamb, 2011;
Hatzilygeroudis & Prentzas, 2004a), neuro-fuzzy approaches,
integrating neural networks with fuzzy methods (Evans &
Kennedy, 2014; Lin et al., 2012; Zhang, Ma, & Yang, 2015),
approaches combining neural networks and genetic algorithms

(Huang, Li, & Xiao, 2015) and approaches combining case-based
reasoning with rule-based reasoning (Prentzas & Hatzilygeroudis,
2007) or other intelligent methods (Chuang & Huang, 2011;
Prentzas & Hatzilygeroudis, 2009).

A number of neuro-symbolic formalisms have been introduced
during last decade (Garcez D’Avila, Broda, & Gabbay, 2002; Garcez
D’Avila, Lamb, & Gabbay, 2009; Hatzilygeroudis & Prentzas, 2004a).
Combinations of symbolic rules (of propositional type) and neural
networks constitute a large proportion of neuro-symbolic
approaches (Gallant, 1993; Hatzilygeroudis & Prentzas, 2000,
2001; Holldobler & Kalinke, 1994; Towell & Shavlik, 1994). The
efforts integrating rules and neural networks may yield effective
formalisms by exploiting the complementary advantages and dis-
advantages of the integrated components (Hatzilygeroudis &
Prentzas, 2004a). Symbolic rule-based systems possess positive
aspects such as naturalness and modularity of the rule base, inter-
active reasoning process and ability to explain reasoning results.
Neural networks lack the naturalness and modularity of symbolic
rules and it is also difficult (or impossible) to provide explanations.
Explanations are crucial in certain domains such as medicine and
finance. However, symbolic rules have disadvantages such as,
difficulty in acquiring rules from the experts (known as the
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‘knowledge acquisition bottleneck’), inability to draw conclusions
when there are missing values in the input data and possible prob-
lems in cases of unexpected input values or combinations of them.
On the other hand, neural networks provide generalization, repre-
sentation of complex and imprecise knowledge and knowledge
acquisition from training examples.

Neurules are a type of integrated rules combining symbolic
rules and neurocomputing (Hatzilygeroudis & Prentzas, 2000,
2001; Prentzas & Hatzilygeroudis, 2011). Neurules belong to
neuro-symbolic representations resulting in a uniform, seamless
combination of the two integrated components. Most of the exist-
ing such approaches give pre-eminence to connectionism. As a
consequence, they do not offer important advantages of symbolic
rules, like naturalness and modularity, and also do not provide
interactive inference and explanation. Neurules follow a different
direction by giving priority to the symbolic than the connectionist
framework. Therefore, the knowledge base exhibits characteristics
such as naturalness and modularity, to a large degree. Further-
more, neurule-based systems provide interactive inference and
explanation.

Integration in neurules involves all knowledge representation
aspects: syntax, semantics and reasoning. Hybridism in syntax
and semantics has been presented in most of our past works on
neurules and for the sake of completeness is briefly presented here
too. Reasoning via neurules can be done via two different inference
processes. The one gives pre-eminence to neurocomputing, namely
connectionism-oriented inference, whereas the other to symbolic
reasoning, namely symbolism-oriented inference. Both inference
processes are integrated in their nature. Connectionism-oriented
inference process has been presented in Hatzilygeroudis and
Prentzas (2010) and compared to two alternative inference
mechanisms used in connectionist expert systems (Gallant, 1993;
Ghalwash, 1998), a type of neuro-symbolic systems. An initial ver-
sion of the symbolism-oriented inference has been presented in
Hatzilygeroudis and Prentzas (2000).

In this paper, we present an improved symbolism-oriented
inference process. Improvement refers to the number of required
computations to produce conclusions, the ability to work with
any order of neurule conditions and the ability to work with two
different sets of discrete values for representing ‘true’, ‘false’ and
‘unknown’ states. We present experimental results comparing
the performance of the new symbolism-oriented process with
the connectionism-oriented one.

However, the main contribution of this paper is the introduc-
tion of an explanation mechanism for neurule-based inference.
The explanation mechanism provides three types of explanations:
‘how’, ‘why’ and ‘why-not’. We also present experimental results
comparing the ‘how’ explanation mechanism with the correspond-
ing mechanism used in connectionist expert systems.

This paper is structured as follows. Section 2 briefly discusses
related work. Section 3 presents neurules. Section 4 discusses the
two alternative inference processes. Section 5 presents the
explanation mechanism. Section 6 presents explanation examples.
Section 7 presents experimental results involving inference and
explanation. Section 8 concludes.

2. Related work

The objective of our work is to remain on the symbolic ground
and incorporate techniques from the connectionist approach into
propositional type symbolic rules to improve their representation
capabilities and performance, without significantly reducing
features, like naturalness and modularity, or sacrificing function-
alities, like interactive inference and explanation. Many attempts

based on the connectionist ground, which simulate or translate
symbolic processes within a neural network, have been made in
the recent years. However, a few of them are able to provide any
of the above features in a satisfactory degree.

We can specify two main research trends. The first trend stems
from Holldobler and Kalinke (1994), where a way to translate a
propositional logic program (i.e. a set of facts and rules) into a neu-
ral network, by encoding its associated semantic operators in a
connectionist way, is introduced. However, it is not accompanied
by any reasoning or explanation process. KBANNs (Knowledge-
Based Artificial Neural Networks) (Towell & Shavlik, 1994) use a
core of propositional rules to construct an initial neural network
and then use empirical knowledge to train the network. This leads
to more efficient training and refinement of the initial symbolic
knowledge. Such approaches are also not accompanied by integrat-
ed reasoning or explanation processes. Outputs are produced from
the trained network via neurocomputing (i.e. numeric computa-
tion) methods without any explanation.

The other trend concerns connectionist expert systems. In con-
nectionist expert systems, domain concepts are associated with
neural network nodes and relationships among concepts are asso-
ciated with links among nodes. A representative such approach is
MACIE (Gallant, 1993). MACIE is accompanied by an inference
and an explanation mechanism. The performance of the MACIE
inference engine was improved by the introduction of the recency
inference engine (Ghalwash, 1998). A comparison of the time per-
formance of these two inference engines, taking into account the
required number of computations is presented in Hatzilygeroudis
and Prentzas (2010). A disadvantage of connectionist expert
systems is that their knowledge bases lack the naturalness and
modularity of symbolic rule bases. Meaningless nodes are inserted
by the training mechanism, to be able to handle non-linearity of
data, thus making representation and provided explanations unna-
tural (see Hatzilygeroudis & Prentzas, 2001).

3. Neurules: syntax and semantics

Neurules are a kind of integrated rules. The form of a neurule is
depicted in Fig. 1a. Each condition Ci is assigned a number sfi, called
its significance factor. Moreover, each neurule itself is assigned a
number sf0, called its bias factor. Internally, each neurule is consid-
ered as an adaline unit neural (Fig. 1b). The inputs Ci (i = 1, . . . ,n) of
the unit are the conditions of the neurule. The weights of the unit
are the significance factors of the neurule and its bias is the bias
factor of the neurule. The existence of bias (bias factor) helps in
training the adaline unit (neurule), more specifically helps the
training algorithm in converging more easily and for more cases.
Training a neural unit (neurule) means finding values for its
weights (significance factors) that satisfy given data, i.e. classify
them correctly. Each input takes a value from the following set of
discrete values: [1 (true),�1 (false),0 (unknown)].

The output D, which represents the conclusion (decision) of the
neurule, is calculated via the standard formulas:

D ¼ f ðaÞ; a ¼ sf0 þ
Xn

i¼1

sfiCi ð1Þ

f ðaÞ ¼
1 if a P 0
�1 otherwise

�
ð2Þ

where a is the activation value and f(x) the activation function, which
is a threshold function. Hence, the output can take one of two
values (‘�1’, ‘1’) representing failure and success of the rule respec-
tively. The significance factor of a condition represents the sig-
nificance (weight) of the condition in drawing the conclusion.
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