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a b s t r a c t

This paper presents transient stability assessment of a large 87-bus system using a new method called
the probabilistic neural network (PNN) with incorporation of feature selection and extraction methods.
The investigated power system is divided into smaller areas depending on the coherency of the areas
when subjected to disturbances. This is to reduce the amount of data sets collected for the respective
areas. Transient stability of the power system is first determined based on the generator relative rotor
angles obtained from time domain simulations carried out by considering three phase faults at different
loading conditions. The data collected from the time domain simulations are then used as inputs to the
PNN. Feature reduction techniques are then incorporated to reduce the number of features to the PNN
which is used as a classifier to determine whether the power system is stable or unstable. It can be con-
cluded that the PNN with the incorporation of feature reduction techniques reduces the time taken to
train the PNN without affecting the accuracy of the classification results.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Power systems currently operate under great economic pres-
sures in the new competitive and deregulated environment. The
demand of electricity has escalated in both industrial and service
sectors, which causes power system to operate in stressed condi-
tion and close to its stability limits. Analysis of recent widespread
outages occurring worldwide indicated that blackouts happened
when a sequential series of normal events exceeded acceptable
security limits and reliability margins. The increasing numbers of
blackouts that have occurred have illustrated the importance and
need of an established dynamic security assessment (DSA) analysis
tool (Pourbeik, Kundur, & Taylor, 2006). DSA is defined as evalua-
tion of the ability of a power system to withstand a defined set
of contingencies and to survive the transition to an acceptable
steady-state condition (Sauer, Tomsovic, & Vittal, 2007). The eval-
uation of DSA requires rigorous analysis, including the assessment
of rotor angle, voltage and frequency stabilities. Rotor angle stabil-
ity is divided into two smaller categories which are small signal
and transient stabilities (Kundur, 2007). The focus of this paper is
on transient stability assessment (TSA) which involves the evalua-
tion of the ability of a power system to maintain synchronism un-
der severe but credible contingencies. The resulting system

response due to severe transient disturbance involves large excur-
sions of generator rotor angles. Transient disturbances may include
faults, loss of load, loss of generation and loss of system compo-
nents such as transformers or transmission lines (Morison, 2007).
Stability or instability condition of a power system due to transient
disturbance can be assessed from the rotor swing angles. Following
a transient disturbance, a power system is said to remain stable if
the relative generator rotor angles in the system remain in syn-
chronism with each other. On the other hand, a power system is
said to be unstable when the relative generator rotor angles go
out of step and lost its synchronism. The time frame of interest
in transient stability studies is usually from 3 to 5 s for small
systems and may extend to 10 s for large systems with dominant
inter-area swings (Kundur, 2007).

In general, methods normally employed to assess TSA are by
using time domain simulation and direct methods. Time domain
simulation method is implemented by solving the state space
differential equations of power networks while the direct method
involves calculation of the transient energy margins which show
the system stability limits. Currently, the TSA method that has been
widely used by power utilities is based on time-domain simula-
tions (Selvi & Kamaraj, 2007). However, the use of such a method
requires numerical solution of system nonlinear equations which
involves time consuming numerical integrations. As for the
transient energy function method, the difficulty of designing
good energy functions for multi-machine power systems may lead
to computational inefficiency and inaccuracy (Pavella, 1998). In
addition, due to the expansion and complexity in power system
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structures, TSA of large sized power systems has become a very
complex process. The complexities come from the many nonlinear
equations that need to be solved for each disturbance which will
lead to delayed decisions in providing the necessary control mea-
sures for controlling the system. Therefore, there is a pressing need
to develop reliable and fast online TSA to analyze the stability sta-
tus of a power system when exposed to credible disturbances.

Presently, the use of computational intelligence (CI) in TSA has
gained a lot of interest among researchers due to its ability to do
parallel data processing, high accuracy and fast response (Wang,
Wu, Li, & Wang, 2005). Four main paradigms of CI are namely arti-
ficial neural networks (ANN), evolutionary computing, swarm intel-
ligence and fuzzy systems. CI techniques are used for TSA of power
systems by means of predicting the generators’ angle swing behav-
ior after the occurrence of a disturbance so as to assess whether the
system is stable or unstable. Earlier ANN method applied in TSA is
based on the multi layer perceptron neural network (MLPNN) with
back propagation learning algorithm to determine the critical clear-
ing time of power systems (Paucar & Fernandes, 2002). The issues
that need to be addressed in the MLPNN are the time taken for
training the network which gets worse when large power systems
are considered, the arbitrarily manner in choosing the number of
hidden neurons and the problem with local minima. Other ANN
methods used for estimating the critical clearing time include the
use of radial basis function neural network (Bettiol, Souza, Todesco,
& Tesch, 2003) and fuzzy ARTMAP architecture (Silveira, Lotufo, &
Minussi, 2003). The emergence of support vector machine (SVM)
in TSA has overcome some of the drawbacks of using MLPNN for
classification (Moulin, da Silva, El-Sharkawi, & Marks, 2004). Vari-
ous types of SVM have been proposed for TSA, using the v-SVM
(Wang et al., 2005), clustering based SVM (Selvi & Kamaraj, 2007)
and fuzzy SVM (Selvi & Kamaraj, 2008).

In this research work, the probabilistic neural network (PNN) is
used as a classifier for assessing transient stability state of a large
sized and practical power system. The purpose of adapting the
PNN is to overcome the weaknesses of the MLPNN in terms of its
accuracy and time taken for training the ANN. One of the important
aspects in achieving good CI performance is by selecting proper
sets of system features. For small power system the number of fea-
tures may be small but when larger systems are considered the
number of features increased as the size of the systems increases.
In this work, feature selection and extraction methods are incorpo-
rated in the TSA intelligent system in order to optimize the perfor-
mance of the PNN. The feature selection method adopted in this
work is based on feature similarity using the correlation analysis
method. This method is chosen because some features in power
systems tend to correlate with each other after a disturbance. As
for the feature extraction method, the principal component analy-
sis is employed due to its simplicity in application and its ability to
show the strength of the transformed reduced features in main-
taining the accuracy of the CI techniques.

2. Probabilistic neural network (PNN)

PNN is useful for automatic pattern recognition, nonlinear map-
ping and estimation of probabilities of class membership and like-
lihood ratios (Specht, 1992). It is a direct continuation of the work
on Bayes classifiers (Burrascano, 1991) in which it is interpreted as
a function that approximates the probability density of the under-
lying distribution example. The PNN consists of nodes with four
layers, namely input, pattern, summation and output layers as
shown in Fig. 1. The input layer consists of merely distribution
units that give similar values to the entire pattern layer.

Fig. 2 shows an example of a pattern layer of the PNN with the
radial basis function (RBF) used as the activation function in the
layer.

The k dist k box shown in Fig. 2 subtracts the input weights,
IW1,1, from the input vector, p, and sums the squares of the differ-
ences to find the Euclidean distance. The differences indicate how
close the input is to the vectors of the training set. These elements
are multiplied element by element, with the bias, b, using the dot
product (.⁄) function and sent to the RBF. The output a is given by

a ¼ radbasðkIW1;1 � pkbÞ ð1Þ

where radbas is the radial basis activation function which can be
written in a general form as

radbasðnÞ ¼ en2 ð2Þ

The training algorithm used for training the RBF is the orthogo-
nal least squares method which provides a systematic approach to
the selection of RBF centers (Chen et al., 1991). The summation
layer shown in Fig. 1 simply sums the inputs from the pattern layer
which correspond to the category from which the training patterns
are selected as either class 1 or class 2. Finally, the output layer of
the PNN is a binary neuron that produces the classification deci-
sion. In this work, the classification is either class 1 for stable cases
or class 2 for unstable cases.

The implementation procedures for PNN are given as follows:

(a) The training data are normalized and presented to the input
of the PNN.

(b) Pass the training data through the pattern layer and then
calculate the Euclidean distances of the training data.

(c) The calculated Euclidean distances are multiplied element
by element with the bias and sent to the RBF. Train the
RBF using the orthogonal least squares method to provide
a systematic approach to the selection of RBF centers.

(d) Train the network in the pattern layer by setting each pat-
tern in the training data equals to the weight vector in one
of the pattern neurons and connecting its output to the
appropriate summation neurons.

Fig. 1. PNN architecture.
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Fig. 2. PNN pattern layer with RBF as activation function.
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