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a b s t r a c t

Identification of transcription factor binding sites is a key task to understand gene regulation mechanism
to discover gene networks and functions. Clustering approach is proved to be useful when finding such
patterns residing in promoter regions of co-regulated genes. Four clustering algorithms, Self-Organizing
Map, K-Means, Fuzzy C-Means and Expectation-Maximization are studied in this paper to discover motifs
in datasets extracted from Saccharomyces cerevisiae, Escherichia coli, Droshophila melanogaster and Homo
sapiens DNA sequences. Required modifications to clustering algorithms in order to adapt them to motif
finding task are presented through the paper. Then, their motif-finding performances are discussed care-
fully and evaluated against a popular motif-finding method, MEME.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Transcription factors (TFs) are key elements that play important
role in gene regulation mechanism. During the regulation process
these factors bind to specific regions of DNA sequence which are
called transcription factor binding sites (TFBS) that reside in the
upstream regions of the genes to be regulated. A TF may bind to
several TFBS of a well conserved sequence pattern, which is gener-
ally called a motif, with some variability. The identification of such
motifs is crucial to understand the complex gene regulatory net-
works and gene functions specifically for putatively co-regulated
genes.

The determination of TFBS via computational methods is prefer-
able to experiments in laboratory conditions since the latter is
labor intensive and usually more expensive to implement than
the former one. Thus, in the literature, numerous computational
tools have been developed for the motif finding task. As far as their
underlying search strategies are concerned, these tools are gener-
ally classified into two major categories (Das & Dai, 2007): proba-
bilistic methods that attempt to find optimal motifs by usually
optimizing a Position Weight Matrix (PWM) and word-based
methods that mainly rely on exhaustive enumeration or counting
frequencies. Probabilistic algorithms are reported to be more
appropriate for longer motifs (e.g., 10–22 nucleotides long) and
sequences, whereas word-based methods are experimentally
proved to be successful at shorter motifs specifically for DNA se-
quences of prokaryotic organisms (Das & Dai, 2007). Nonetheless,

regardless of its adopted model, no algorithm alone is reported
to be sufficient for predicting accurate motifs for every condition
(Hu, Li, & Kihara, 2005; Osada, Zaslavsky, & Singh, 2004) Thus,
the motif discovery problem still remains to be challenging for
researchers.

In addition to the methods of above mentioned two major cat-
egories, machine learning algorithms have recently shown a prom-
ising direction to practice unsupervised motif discovery. In some
studies (Ganesh, Siegele, & Ioerger, 2003; Kankainen & Loytynoja,
2007), machine learning methods such as clustering algorithms
are utilized as post-processing or pre-processing tools to detect
motifs in given sequences. Moreover, a paper (Kankainen &
Loytynoja, 2007) has shown that a clustering algorithm alone can
be used to find optimal motifs in promoter regions of co-regulated
genes, and also to find protein sequence motifs (Hardik & Sun,
2005). For instance the Self-Organizing Map (SOM) is employed
by Liu, Xiong, DasGupta, and Zhang (2006) and Mahony, Hendrix,
Smith, and Golden (2005) in their studies and the SOM is reported
to be appropriate to find TFBS reside in promoter regions of co-
regulated genes of prokaryotic Saccharomyces cerevisiae organism.
In general, it is understood from such papers that subsequence
clustering is an efficient strategy to compose a motif pattern, or
in other words to build a PWM, from TFBS being sought. Conse-
quently, it is clear that the machine learning methods, specifically
clustering algorithms, are suitable means to support unsupervised
identification of TFBS in DNA sequences.

This study is primarily inspired from the study (Mahony et al.,
2005) that reports a pure clustering strategy is efficient and satis-
factory for de novo motif discovery. The main goal of the paper is to
compare and evaluate performances of some well-known
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clustering algorithms at motif-finding and DNA subsequence clus-
tering. The clustering algorithms, however, are mainly targeted to
work within high-dimensional vector space of numerical values
and not suitable to process DNA subsequences with the consider-
ation of background model. Thus, some novel contribution to each
considered clustering algorithm in order to make them work with
strings of DNA alphabet will be presented in the paper. In general,
such modifications include adaptation of distance function and
forming a cluster with given inputs where the cluster is actually
a PWM and the input is a DNA subsequence.

For the mentioned goals, the paper will initially introduce the
relevant clustering algorithms, SOM, K-Means, Fuzzy C-Means
(FCM) and Expectation-Maximization/Gaussian Mixture Models
(EM/GMM). This essential information and the required modifica-
tions to the algorithms will be available to the reader through Sec-
tion 2. Experiments over promoter DNA sequences of Yeast,
Escherichia coli, Fly and Human species and the evaluation of the
experimental results are given in Section 3. The performances of
the presented clustering algorithms will also be compared to the
results of a well known motif discovery tool, MEME (Bailey &
Elkan, 1994).

2. Methods

This paper considers the motif finding problem as finding n
number of l-length DNA subsequences from a set of promoter se-
quences of putatively co-regulated genes. The sought subse-
quences, i.e., transcription binding sites, are overrepresented in
the given sequences and have a common pattern of highly con-
served nucleotide positions with some variability. Thus, main idea
of the paper is clustering subsequences of the same motif pattern,
in other words aligning or locally aligning sequences will reveal
the sought motif. However, in real-life scenarios low signal-
to-noise ratio existing in the given input sequences prevents a
straightforward clustering scheme from extracting potential
motifs. In order to overcome such an issue, a common way is
to utilize a background model that generally provides adequate
information to distinguish statistically important sequence
features from trivial ones. A background model is organism
specific statistical information of nucleotide occurrences and it
is extracted with the consideration of the whole genome of the
organism.

Under these circumstances, DNA motif finding problem can be
summarized more formally as uncovering a PWM of a sought motif
pattern. Such a PWM will be based upon locally aligned l-length
DNA subsequences. A PWM is thus an l � 4 matrix of probabilities
of nucleotides at each position i where 1 < i < l. As stated before,
removing the bias towards the background noise requires taking
background model into account and hence PWM is characterized
as:

mi;k ¼ log
fi;k

pi
b

 !
; ð1Þ

where m is the l � 4 PWM, f is the l � 4 position frequency matrix,
pi

b denotes the background frequency of letter b 2 {A, C, G, T}. Third
order Hidden Markov Model (HMM) of the whole genomic
sequence of the organism is utilized to obtain the background fre-
quencies of the letters, i.e., nucleotides, is utilized as background
model.

This l-length subsequence clustering process will produce a set
of clusters where each cluster center is a PWM to represent a motif
model. In this system, potential PWMs that represent a statistically
interesting sequence pattern can be distinguished by ranking
PWMs with a scoring scheme. Most frequent scoring schemes from
the literature (Stormo, 2000) focus upon the point that a motif pat-

tern should be distinct from the background model where the dis-
tinction comes with a simple characteristics: high information
content. In order to reveal potential motifs, this paper calculates
z-score of each PWM after the clustering phase is accomplished
and then PWMs with highest z-score are taken into account as mo-
tif candidates:

z-score ¼ O� E
r

; ð2Þ

where O stands for the number of subsequences associated with the
PWM. In order to calculate parameters E and r, artificial sequences
are generated by using the background model and given to the clus-
tering scheme. After all artificial subsequences are associated with
the final clusters, E represents the number of artificial subsequences
coincide to the node and r shows the standard-deviation of the
coincidence. In conclusion, the PWMs are ranked with z-scores
and the highest z-scores represent the most probable motif candi-
dates of the algorithm. Please note that information content value
in this case is directly proportional with z-score.

Clustering is at the core of described method given in this sec-
tion. So, this paper implements Self-Organizing Map (SOM, Fuzzy
C-Means (FCM), K-Means and Gaussian Mixture Models (GMM)
based Expectation-Maximization (EM) clustering schemes. Follow-
ing subsections will provide implementation details of each clus-
tering algorithm utilized in this study.

2.1. Self-Organizing Map (SOM)

Self-Organizing Map (SOM) is a sort of neural-network that is
mainly used for visualization, dimension reduction and data
compression (Kohonen, 1998). SOM generally takes inputs of
high-dimensional space and consequently maps these inputs into
a lower dimensional space. In order to accomplish such a projec-
tion of inputs, SOM employs an input layer of vectors with the
same dimensionality of inputs and an output layer of nodes
interconnected with input layer. In most of the applications
the output layer is chosen as low dimensionality as 2D planar
grid of nodes to provide easy interpretation of transformation
products.

The basic SOM algorithm can be summarized as: (a) randomly
initialized weight vectors in the input layer are fed with one input
at a time, (b) closest weight vector to the input, in other words
winner node or best matching unit (BMU) is chosen, (c) winner
node and its topological neighbors are updated with the input,
(d) steps a–c are repeated for each input for a number of times
which is called training. More formally, the index of BMU is deter-
mined via:

c ¼ arg minðdistðxi;nkÞÞ; ð3Þ

where xi represents an input to be compared to nk which is a node
on SOM output layer; dist stands for an appropriate distance func-
tion, most commonly Euclidean.

2.1.1. Algorithm adaptations for motif finding strategy
In the application of motif finding the basic SOM algorithm flow

remains almost the same; SOM, however, is mostly designed for
numerical inputs and thus some modifications should be applied
in order to make it work for subsequence clustering with PWMs.
For motif finding, where the input space consists of subsequences
extracted from the given promoter sequences of putatively co-reg-
ulated genes, each node at the output layer of SOM is associated
with a randomly initialized PWM (a). Comparing an input subse-
quence x, which is an l-length string of nucleotides A, C, G and T
in an arbitrary order, with an l � 4 PWM in order to find closest
PWM to the given input requires a likelihood function to adapt
Eq. (3) to motif finding procedure:
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