
An application perspective evaluation of multi-agent system in
versatile environments

T. Vengattaraman a, S. Abiramy b, P. Dhavachelvan a,⇑, R. Baskaran c

a Department of Computer Science, Pondicherry University, Puducherry, India
b Department of Computer Science, Saradha Gangadharan College, Puducherry, India
c Department of Computer Science and Engineering, Anna University, Chennai, India

a r t i c l e i n f o

Keywords:
Testing and debugging
Distributed artificial intelligence
Multi-agent systems
Exception handling
Metrics-performance measures
Model validation and analysis

a b s t r a c t

Multi-agent systems (MAS) based computing is the most appropriate paradigm for the problem domain,
where data, control, expertise or resources are distributed and also it is interesting to the user only if the
technologies address the issues of interest to the user. The MAS has the hypothesis that the agent based com-
puting offers better approach to manage the complex systems and process. They are large-scale systems and
collaborate with one another to achieve their functions in a highly modular and flexible way. In this point of
view, the work presented in this paper is an enhanced attempt to validate the MAS based on application per-
spective. As a test-bed, a distributed MAS for software testing is constructed such that to provide a hybrid
testing environment based on variety of agents, which possibly incorporate several testing techniques. The
developed framework is validated on two perspectives namely, efficiency of the application domain, i.e.
software testing using MAS and efficiency of the proposed framework. The validation of the later case has
been carried out on two conditions: regular working environment and exceptional working environment.
The second type of validation provided the guidelines for implementing proper exception handling mech-
anism in the enhanced MAS, which is being developed for software testing Purpose.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The technology of agent-based systems has generated lots of
interest among the user and developer in recent years through
its ability as a new paradigm for conceptualizing, designing, and
implementing software systems. This characteristic is particularly
attractive for creating software that operates in environments that
are distributed and open, such as the internet. Currently, the great
majority of agent-based systems consist of a single agent. How-
ever, as the technology matures and addresses increasingly com-
plex applications, the need for systems that consist of multiple
agents that communicate in a peer-to peer fashion is becoming
apparent. Central to the design and effective operation of such
MASs are a core set of issues and research questions that have been
studied over the years by the distributed AI community (Platon,
Sabouret, & Honiden, 2007). Multi-agent systems are considered
as the next major generation of software to deal with the increas-
ing complexity in modern applications. MAS are distributed sys-
tems of autonomous and interacting entities called as agents.
They are large-scale systems and the agent research community

aims at agents collaborate or compete with one another to achieve
their functions in a highly modular and flexible way. A variety of
applications of agent technologies can be observed in software
developed from autonomous robots in manufacturing to software
agents that assist users over the Internet. Multi-agent systems
are therefore promising models in the future advances in software
engineering and artificial intelligence fields.

Despite the rapid advances in agent technologies, their adoption
in mainstream software application areas is still limited. It is gener-
ally recognized that a major reason is the lack of systematic meth-
ods to guide the development of agent-oriented systems. Agent-
oriented methodologies have thus become an important and urgent
area of research (Brauer, Nickles, Rpbatsos, Weiss, & Lorentzen,
2001; Bresciani, Perini, Giorgini, Giunchiglia, & Mylopoulos, 2001).
In the last few years, many diverse AOSE approaches and methodol-
ogies have been proposed. They offer a range of modeling concepts,
elaboration and analysis techniques, and opportunities for tool
support. They vary in maturity and scope of coverage. The diversity
of approaches offers rich resources for developers to draw on, but
can also be a hindrance to progress if their commonalities and diver-
gences are not readily understood (Caire, Cossentino, Negri, Poggi, &
Turci, 2004). One way to advance the state of research in agent-
oriented methodologies is to define a suitable example problem that
can serve as a focal point for discussion and exchange of research
ideas and results. Examples are indispensable for illustrating and

0957-4174/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.07.047

⇑ Corresponding author.
E-mail addresses: vengat.mailbox@gmail.com (T. Vengattaraman), abiramy.

hari@gmail.com (S. Abiramy), dhavachelvan@gmail.com (P. Dhavachelvan),
baaski@cs.annauniv.edu (R. Baskaran).

Expert Systems with Applications 38 (2011) 1405–1416

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2010.07.047
mailto:vengat.mailbox@gmail.com
mailto:abiramy.hari@gmail.com
mailto:abiramy.hari@gmail.com
mailto:dhavachelvan@gmail.com
mailto:baaski@cs.annauniv.edu
http://dx.doi.org/10.1016/j.eswa.2010.07.047
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

explaining methodologies. They provide concrete instances that
allow abstract concepts and descriptions to come alive through
domain settings and scenarios.

Once a designer has made the decision to use a multi-agent sys-
tem, a number of methodologies exist for building multi-agent sys-
tems (Brauer et al., 2001; Bresciani et al., 2001; Caire et al., 2001;
Rana, 2000). These methodologies range from extensions of exist-
ing object-oriented methodologies to new agent-oriented tech-
niques, which offer a new perspective for developing multi-agent
systems by increasing the level of abstraction to analyze and de-
sign the system. But unfortunately, in the existing multi-agent sys-
tems, too few are described with sufficient details to use them for
real world problems. The solution is to construct and use objective
specific frameworks that are best suited for the given problem
space. From this perspective here, an objective specific multi-agent
framework for software testing is developed. The problem solvers
of the multi-agent system, besides being autonomous, may also
make use of heterogeneous design, which is also followed in this
framework (Coelho, Kulesza, von Staa, & Lucena, 2006; Dhavachel-
van & Uma, 2003, 2004, 2005; Dhavachelvan, Uma, & Venkatacha-
lapathy, 2006; Rana, 2000).

A critical challenge in creating effective agent-based systems is
making them robust in the face of potential failures. Most work to
date on multi-agent systems has focused, however, on supporting
external exception handling and has typically assumed relatively
simple closed environments where the infrastructure is reliable
and agents can be trusted to work correctly. In the complex and
open environment the departures of the agent behavior from
‘‘ideal” multi-agent system behavior, can be called exceptions, re-
sults of inadequate exception handlings include the potential for
poor performance (Denis & Bruno, 2007; Kaminka, 2009; Klein,
Rodriguez-Aguilar, & Dellarocas, 2003; Platon et al., 2007; Shah,
Chao, & Godwin, 2007; Zhu, 2001). The appropriate exception han-
dlings in the MAS framework not only affect the quality of the
framework, also affects the performance of the application domain.
The possible set of exceptions and exception handling mechanism
are also described and assessed in this paper.

The organization of paper is as follows: Section 2 defines the pro-
posed enhanced version of multi-agent system for software testing
as an application domain as proposed in Dhavachelvan et al.
(2006). Section 3 explains the experimentation methodology to val-
idate the proposed system in two perspectives including exceptional
run time environment. Section 4 presents the quantitative statistical
analysis over the results obtained in the experiments and the Section
5 gives the concluding remarks and future enhancements.

2. Proposed system

In this paper, a framework for multi-agent system based soft-
ware testing is described. It is an enhanced version of the proposed
framework as described in the research works (Dhavachelvan &
Uma, 2005; Dhavachelvan et al., 2006). The framework is able to
accommodate variety of distinct testing techniques and also can
accommodate more number of products. From the product per-
spective, the proposed system can be defined in terms of product
specific agents as in Eq. (1) as follows:

Definition 1. Let ‘Api
’ be the set of agents needed for testing the

product ‘Pi’ and with respect to Pi, ‘Api
’ can be defined as,

APi
¼

ðDi; ai1; ai2; ai3; ai4; . . . ; aiyÞ;
ai1 ¼ ðai1; acið11Þ; acið12Þ; . . . ; acið1Ki1�1ÞÞ;
ai2 ¼ ðai2; acið21Þ; acið22Þ; . . . ; acið2Ki2�1ÞÞ;

..

.

aiy ¼ ðaiy; aciðy1Þ; aciðy2Þ; :aciðyKiy�1ÞÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð1Þ

where
� ‘Di’ is the distributor agent of the product ‘Pi’ and ‘H’ is the num-

ber of products to be tested simultaneously and then 0 < i 6 H.
� ‘aij’ is the one of the testing agents of ‘Ai’ and ‘aci(ju)’ is the one of

the clones of ‘aij’ and then 0 < j 6 y, 0 < u 6 kij � 1.
� ‘y’ is the number of testing agents and also the number of differ-

ent testing environments required for the product ‘Pi’.
� ‘Kij � 1’ refers to the maximum number of clones of ‘aij’ and ‘Kij’

refers to the total number of agents available in the particular
testing environment ‘j’ of the product ‘Pi’.

Since this multi-agent framework provides, scalar type testing
environment, at any instant, Ai1 \ Ai2 ¼ /, where, 0 < i1, i2 6 H and
i1 – i2, i.e. at any specific service duration, neither a single agent
(distributor) nor an agent set (testing agent + clones) can be shared
by more than one product simultaneously.

The state representation of the proposed MAS framework is
shown in Fig. 1. The input to the distributor agent ‘Di’ is from the
tester and it includes the set of the testing product, time specifica-
tion for testing, defect detector estimations and the specification
about the required testing techniques. This is transferred to the
reactive layer of ‘Di. The output of the reactive layer is the estimated
values of products’ complexity arranged in the non-increasing
order.

The high priority product will be considered for service at first
and the specifications will be transferred to communication layer
and the other products will be given to the next distributor agent
‘Dj’. Based on the testing service specifications, the appropriate
set of agents can be defined and identified through the negotiation
process in the communication layer. Then the assignments will be
distributed to the identified set of testing agents and their outputs
can be obtained for integration. The Environmental Test Reports
from the identified testing agents will be integrated in the deliber-
ative layer and then passed to the external world. The distributor
agent is responsible for all types of co-ordination activities in this
system.

The initial input to the testing agent aij is from the correspond-
ing distributor agent. It includes the set of the testing product, time
specification for testing, defect detector estimations and the esti-
mated complexity of the product. This is transferred to the data-
base and the deliberative layer of aij assesses it. The output of
the deliberative layer is a set of estimated values on average size
of the modules of the product and the predicted values of total
number of test cases to be built by aij, average size of the test case
and average time required for generating and executing an unit
test case.

Communication layer will define the mode of load distribution
and it is based on the input from the distributor agent. This layer is
also responsible for defining the number of clone(s) that are
needed to generate. Moreover processes of clone registration, load
distribution and collection of results from the clones are to be done
in the communication layer. At the same time it will distribute the
load to the reactive layer of same aij. The results from the reactive
layer and Environmental Partial Test Reports (EPTRs) from the
clones will be processed in the deliberative layer. Then the gener-
ated Environmental Test Report (ETR) of aij will be transferred to
the distributor agent Di.

2.1. Distributor agent

The structure of the distributor agent in relation to its environ-
ment is shown in Fig. 2. The overall functionality of the distributor
agent is composed in the three layers: Complexity assessment and
Testing Products Rating and Selection are implemented in the reac-
tive layer; integration of ETR is to be done in the deliberative layer;

1406 T. Vengattaraman et al. / Expert Systems with Applications 38 (2011) 1405–1416

Download English Version:

https://daneshyari.com/en/article/385726

Download Persian Version:

https://daneshyari.com/article/385726

Daneshyari.com

https://daneshyari.com/en/article/385726
https://daneshyari.com/article/385726
https://daneshyari.com

