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a b s t r a c t

In this study, an adaptive fuzzy time series model for forecasting Taiwan’s tourism demand is proposed to
further enhance the predicted accuracy. We first transfer fuzzy time series data to the fuzzy logic group,
assign weights to each period, and then use the proposed adaptive fuzzy time series model for forecasting
in which an enrollment forecasting values is applied to obtain the smallest forecasting error. Finally, an
illustrated example for forecasting Taiwan’s tourism demand is used to verify the effectiveness of pro-
posed model and confirmed the potential benefits of the proposed approach with a very small forecasting
error MAPE and RMSE.

� 2011 Elsevier Ltd. All rights reserved.

1. Fuzzy time series

Tourism forecasts are usually generated by either quantitative
or qualitative approaches. Quantitative approaches develop and
employ mathematical models and theories to fit its natural phe-
nomena. Unlike quantitative approaches, qualitative approaches
involve in-depth understanding of human behavior and the
reasons behind various aspects of behavior, thus its studies in
the tourism field are very limited. Since most of tourism studies
have focused on regression analysis to estimate the quantitative
relationship between tourism demand and its determinants, or
time series models to extrapolate historic trends in tourism
demand into the future without considering the underlining causes
of the trends. Before the 1990s, traditional regression approaches
dominated the tourism forecasting literature, but this trend chan-
ged from the mid-1990s as more researchers began to use modern
econometric techniques, such as cointegration and error correction
models, to model and forecast tourism demand; these studies
include Song, Witt, and Li (2003), Kulendran and King (1997) and
Morley (1998). However, each method has its own particular
advantages/disadvantages, when the collected data are not enough
to model regression model or time series model, or there exists
fuzzy time series data, the statistical quantitative methods are usu-
ally failure to have smaller forecasting error. In order to improve
forecasting accuracy, a fuzzy time series model is adopted in this
study in order to provide a much more flexible examination for
managing smaller data set or fuzzy data.

An alternative approach, fuzzy time series model (Song &
Chissom, 1993a, 1994, 1993b) have been developed and applied in
forecasting as if the given datum is in linguistic terms or smaller
than fifty data. Song and Chissom (S&C in abbreviation) were the
pioneers of studying fuzzy time series model in 1993, then fuzzy
time series model had drawn much attention to the researchers.
For model modifications, Chen (1996) focused on the operator used
in the model and simplified the arithmetic calculations to improve
the composition operations and further introduced a concept of
fuzzy logical groups to improve the forecast; Huarng (2001) made
a study on the effective length of intervals to improve the forecast-
ing in fuzzy time series; Tsaur, O Yang, and Wang (2005) made an
analysis of fuzzy relations in fuzzy time series on the basis of
entropy of the system used it to determine the minimum value of
invariant time index t to minimize errors in the forecasted values
of enrollments; Cheng, Cheng, and Wang (2008) introduces a novel
multiple-attribute fuzzy time series method based on fuzzy cluster-
ing in which fuzzy clustering are integrated in the processes of fuzzy
time series to partition datasets objectively and enable processing of
multiple attributes. For forecasting with applications, Yu (2005)
proposed a weighted method to forecasting the TAIEX to tackle
two issues, recurrence and weighting, in fuzzy time-series forecast-
ing; Huarng and Yu (2006) applied a back propagation neural
network to handle nonlinear forecasting problems in stock price
forecasting. Chen (1996) presented high-order fuzzy time series
based on multi-period adaptation model for forecasting stock
markets. Further, Chen and Hwang (2000), Wang and Chen (2007),
Lee, Wang, and Chen (2007) proposed methods for temperature
prediction and TAIFEX forecasting based on their proposed fuzzy
time series models. As we know, every prediction model is designed
with the hope to obtain the characteristics of the system. The more
the information that relate to the system dynamics are considered,
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the better the prediction will be. In this paper, Markov chain based
on statistical method is incorporated with the fuzzy time series
model to further enhance the predicted accuracy. However, the
above studies do not provide the user with an efficient method to
significantly reduce its forecasting error. In practice, we need to
known how much of a fluctuation in demand is due to randomness
and how much of it is due to a shift in the base. Therefore a method is
needed to help exploit the information gathered during the past
periods and then improve the forecast accuracy where several adap-
tive forecasting methods have been developed for this purpose (e.g.
Chen, Cheng, & Teoh, 2008; Cheng, Chen, Teoh, & Chiang, 2008).
Therefore, in order to decrease to forecasting error in fuzzy time
series model, we adopt an adaptive method to hybridize fuzzy time
series model which allows a smoothing parameter to change over
time and adapt to changes the characteristics of the time series data.

In Section 2, the basic concept of fuzzy time series model is
introduced. Next, an adaptive fuzzy time series model is proposed
and d an enrollment forecasting is illustrated in Section 3. Besides,
the accuracy and robustness for the proposed method are evalu-
ated and discussed with an illustration about Taiwan’s tourism de-
mand in Section 4. Finally, the summary and conclusions is drawn
in Section 5.

2. Fuzzy time series model

In this section, the basic fuzzy time series model concepts are
described as follows using the example illustrated for enrollment
forecasting in the Alabama University. Let U be the universe of dis-
course, U = {u1,u2, . . . , un}, and let Ai be a fuzzy set in the universe of
discourseU defined as Eq. (1) as below:

Ai ¼ lAi
ðu1Þ=u1 þ lAi

ðu2Þ=u2 þ � � � þ lAi
ðunÞ=un; ð1Þ

where lAi
is the membership function of the fuzzy set Ai, such that

lAi
: U ? [0,1], and lAi

ðujÞ represents the grade of membership of uj

in Ai where lAi
ðujÞ 2 [0,1].

Definition 1. If Y(t) (t = 1,2, . . . ,n) is a subset of R1 in which the
universe of fuzzy sets fi(t) (i = 1,2, . . . ,m) are defined and let F(t) be
collection of fi(t) (i = 1,2, . . . ,m), then F(t) is called a fuzzy time
series on Y(t) (t = 1,2, . . . ,n).

Definition 2. If any two fuzzy sets fi(t) and fj(t � 1) are considered
as matrices [fi(t)]m�1 and [fj(t � 1)]1�m, respectively, then the fuzzy
relation matrix between two matrices could be the max–min com-
posite as below

Rijðt; t � 1Þ ¼ max
j

min fi1ðtÞ; f1jðt � 1Þ
� �

�1; 8 i; j ¼ 1;2; . . . ;m:

Definition 3. If for any fj(t) 2 F(t) and fi(t � 1) 2 F(t � 1) there exist
a fuzzy relation Rij(t, t � 1) such that fj(t) = fi(t � 1) � Rij(t,t � 1),
where ‘�’ is the max–min composition operator, then F(t) is said
to be caused only by F(t � 1) and is denoted by fi(t � 1) ? fj(t) or
by F(t � 1) ? F(t).

Definition 4. If F(t) is a fuzzy time series, F(t) = F(t � 1) for any t
and F(t) has only finite elements fi(t) (i = 1,2, . . . ,m), then

Rðt; t � 1Þ ¼ fiðt � 1Þ � fjðtÞ [ fiðt � 2Þ � fjðt � 1Þ [ � � � [ fiðt � nÞ
� fjðt � nþ 1Þ; 8n > 0:

Definition 5. Let F(t � 1) = Ai and F(t) = Aj. The relationship
between two consecutive observations, F(t � 1) and F(t), referred
to as a fuzzy logical relationship can be denoted by Ai ? Aj, where
Ai is called the left-hand side and Aj the right-hand side.

Then, the stepwise procedure proposed by S& C’s model is de-
scribed as below.

Step 1. Define the universe of discourse U for the historical data.
First, we find the minimum data Dmin and the maximum
data Dmax individually in the historical time series data,
then we define the universal discourse U as [Dmin � D1,
Dmax + D2], where D1 and D2 are two proper positive
numbers.

Step 2. Partition the universe of discourse into equal length of
intervals: u1,u2, . . . ,un. The number of intervals will be in
accordance with the number of fuzzy sets A1,A2, . . . ,An to
be considered.

Step 3. Define the fuzzy sets Ai on universe of discourse U in Step
2. If there are fuzzy setsA1,A2, . . . ,An, then the fuzzy sets Ai,
" i = 1,2, . . . ,n can describe as Ai ¼ lAi

ðu1Þ=u1 þ lAi
ðu2Þ=

u2 þ � � � þ lAi
ðunÞ=un.

For example, the linguistic variable ‘enrollment’ can be
described the fuzzy sets as A1 = (not many), A2 = (not too
many), A3 = (many), A4 = (many many), A5 = (very many),
A6 = (too many), A7 = (too many many). Thus, all the fuzzy
sets are expressed as follows:

A1 ¼ 1=u1;0:5=u2;0=u3;0=u4;0=u5;0=u6;0=u7f g;

A2 ¼ 0:5=u1;1=u2;0:5=u3;0=u4;0=u5;0=u6;0=u7f g;

A3 ¼ 0=u1;0:5=u2;1=u3;0:5=u4;0=u5;0=u6;0=u7f g;

A4 ¼ 0=u1;0:5=u2;0:5=u3;1=u4;0:5=u5;0=u6;0=u7f g;

A5 ¼ 0=u1;0=u2;0=u3;0:5=u4;1=u5;0:5=u6;0=u7f g;

A6 ¼ 0=u1;0=u2;0=u3;0=u4;0:5=u5;1=u6;0:5=u7f g;

A7 ¼ 0=u1;0=u2;0=u3;0=u4;0=u5;0:5=u6;1=u7f g:

Step 4. Fuzzify the historical data. Find the fuzzy sets Ai

(i = 1,2, . . . ,n) which each historical data belonged, and
show the fuzzified enrollment data of the Alabama Univer-
sity is listed as Table 1.

Step 5. Determine fuzzy relation matrix R.
We have the fuzzy logical relationships from Table 1 as
follows:

A1 ! A1; A1 ! A2; A2 ! A3; A3 ! A3;

A3 ! A4; A4 ! A4; A4 ! A3; A4 ! A6; A6 ! A6;

A6 ! A7; A7 ! A7; A7 ! A6:

Table 1
Enrollment data of Alabama University.

Year Historical data Y(t) u1 u2 u3 u4 u5 u6 u7

1971 13,055 1 0.5 0 0 0 0 0
1972 13,563 1 0.8 0.1 0 0 0 0
1973 13,867 1 0.9 0.2 0 0 0 0
1974 14,696 0.8 1 0.8 0.1 0 0 0
1975 15,460 0.2 0.8 1 0.2 0 0 0
1976 15,311 0.2 0.8 1 0.2 0 0 0
1977 15,603 0 0.6 1 0.6 0.1 0 0
1978 15,861 0 0.5 1 0.7 0.2 0 0
1979 16,807 0 0.1 0.5 1 0.9 0.2 0
1980 16,919 0 0.1 0.5 1 0.9 0.2 0
1981 16,388 0 0.2 0.8 1 0.5 0 0
1982 15,433 0.2 0.8 1 0.2 0 0 0
1983 15,497 0.2 0.8 1 0.2 0 0 0
1984 15,145 0.2 0.8 1 0.2 0 0 0
1985 15,163 0.2 0.8 1 0.2 0 0 0
1986 15,984 0 0.2 1 0.7 0.2 0 0
1987 16,859 0 0.1 0.5 1 0.8 0.1 0
1988 18,150 0 0 0.1 0.5 0.8 1 0.7
1989 18,970 0 0 0 0.25 0.55 1 0.8
1990 19,328 0 0 0 0.3 0.5 0.8 1
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