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a b s t r a c t

The genetic algorithm, the simulated annealing algorithm and the optimum individual protecting algo-
rithm are based on the order of nature, and there exist some application limitations on global astringency,
population precocity and convergence rapidity. An adaptive annealing genetic algorithm is proposed to
deal with the job-shop planning and scheduling problem for the single-piece, small-batch, custom pro-
duction mode. In the AAGA, the adaptive mutation probability is included to improve upon the conver-
gence rapidity of the genetic algorithm, and to avoid local optimization, the Boltzmann probability
selection mechanism from the simulated annealing algorithm, which solves the population precocity
and the local convergence problems, is applied to select the crossover parents. Finally, the AAGA-based
job-shop planning and scheduling problem is discussed, and the computing results of AAGA and GA
are depicted and compared.
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1. Introduction

With increasing customer demand and the globalization of the
market, more and more enterprises make the products using the
single-piece, small-batch, custom production mode (SPSBCP)
(Sohlenius, 1992), which requires that the product design, process
planning, job-shop planning and scheduling be re-designed for
every order.

The integrated system model of Computer Aided Process Plan-
ning and Production Planning & Scheduling based on distributed
and dynamic process planning solves the integration and concur-
rence problems of CAPP and PPS in SPSBCP mode (Liu, Bai, & Zhang,
2004). In job-shop planning, the replacing scenario, such as chang-
ing operation process and adjusting equipments, should be taken
into account to finish the daily job smoothly, and the manufactur-
ing jobs that require special equipment should be scheduled prop-
erly to assure that the key resources have no latency time when
job-shop planning is completed.

A wide literature base has been published on production sched-
uling, focusing mostly on scheduling for various types of produc-
tion systems at the shop floor or assembly-line level, such as job-
shop scheduling (Adibi, Zandieh, & Amiri, 2010; Guo, Wong, Leung,
Fan, & Chan, 2006; Sha & Lin, 2010; Zhang, Gao, & Shi, 2011), flow-
shop scheduling (Chiang, Cheng, & Fu, 2011; Khademi Zare & Fak-
hrzad, 2011; Yagmahan & Yenisey, 2010), machine scheduling
(Baek & Yoon, 2002; Balin, 2011; Behnamian, Zandieh, & Fatemi

Ghomi, 2009), assembly-line scheduling (Guo, Wong, Leung, Fan,
& Chan, 2008; Zhang, Kano, & Kyoya, 2000) and order scheduling
(Ashby & Uzsoy, 1995; Axsater, 2005; Chen & Pundoor, 2006;
Guo, Wong, & Leung, 2008).

The genetic algorithm, the simulated annealing algorithm and
the optimum individual protecting algorithm are based on the or-
der of nature and have been applied to solve complex combination
optimization problems (Fogel, 1994) and intelligent control prob-
lems (Maniezzo, 1994) because of their higher steadiness and glo-
bal optimization (Holland, 1975). However, there are some
application limitations, such as global astringency, population pre-
cocity and convergence rapidity (Qi & Palmieri, 1994; Rudolph,
1994; Zhang, Xu, & Liang, 1997). Sirag put forth the unified ther-
modynamic operator (Sirag & Weisser, 1987), Bosesniuk applied
the Boltzmann-, Darwin- and Heackel- strategies in the optimiza-
tion problems (Bosesniuk & Ebeling, 1990), and Golberg provided
the parallel simulated annealing algorithm (Golberg & Mahfoud,
1992) to improve those algorithms.

The parallel variable neighborhood search (PVNS) algorithm
uses various neighborhood structures that carry the responsibility
of making changes in the assignment and sequencing of operations
for generating neighboring solutions (Yazdani, Amiri, & Zandieh,
2010). Pezzella, Morganti, and Ciaschetti (2008) propounded a
GA for flexible flow-shop scheduling based on the integrated ap-
proach, in which a mix of different strategies for generating the ini-
tial population, selecting individuals for reproduction, and
reproducing new individuals is presented. Gao, Sun, and Gen
(2008) studied flow-shop scheduling with three objectives: min
(minimum) makespan, min maximal machine workload, and min
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total workload. They developed a hybrid genetic algorithm based
on the integrated approach for this problem. Pan proposed a hybrid
genetic algorithm to solve the no-wait job-shop scheduling prob-
lem (Pan & Huang, 2009). The variable neighborhood search
(VNS) (Amiri, Zandieh, Yazdani, & Bagheri, 2010) is a modern
meta-heuristic based on systematic changes of the neighborhood
structure within a search to solve combinatorial optimization
problems.

In this paper, the adaptive annealing genetic algorithm (AAGA)
is proposed to solve the job-shop planning and scheduling prob-
lems for the single-piece, small-batch, custom production mode.
AAGA adopts the population diversity, the adaptive mutation prob-
ability and the Boltzmann probability selection mechanism to im-
prove the convergence rapidity of the genetic algorithm. The
remainder of this paper is organized as follows. Section 2 describes
the AAGA. The adaptive mutation probability and the Boltzmann
probability selection mechanism are included in the AAGA, and
then the global astringency of AAGA is proven. Section 3 describes
the job-shop planning and scheduling model of the SPSBCP produc-
tion mode. Section 4 designs the adaptive annealing genetic algo-
rithm for the job-shop planning and scheduling problems.
Section 5 compares the results of the GA and AAGA. Section 6 sum-
marizes the contributions of this work and outlines some future
considerations.

2. Adaptive annealing genetic algorithm

In the genetic algorithm, the mutation probability is fixed for
the entire optimum process of the domain in question, which re-
sults in local optimization and increases the searching time. The
adaptive mutation probability is provided to improve the conver-
gence rapidity of the genetic algorithm, and the Boltzmann proba-
bility selection mechanism is included to select the crossover
parents and to assure the population variety. The adaptive muta-
tion probability-based and the Boltzmann probability-based AAGA
meet the global astringency requirement.

2.1. Some concepts related to the AAGA

2.1.1. Crossover, mutation and selection
jXn0j and jXn1j denote the element numbers of the space Xn0 and

the space Xn1, respectively, as below:

Xn0 ¼ fSð1Þ; . . . ; SðiÞ; Sðiþ1Þ; . . . ; SðX
n0Þg;

Xn1 ¼ fPð1Þ; . . . ; PðiÞ; Pðiþ1Þ; . . . ; PðX
n1Þg;

where S(i)(i = 1,2, . . . , jXn0j) is the element of the parent population
space Xn0,P(j)(j = 1,2, . . . , jXn1j) is the element of the crossover popu-
lation space Xn1, P(m)(m = 1,2, . . . , jXn1j) is the element of the mid
population space Xn1, Cij(k) is the crossover probability from S(i) into
P(j) in step k, Mjm(k) is the mutation probability from P(j) into P(m),
and SðiÞmqðkÞis the transfer probability from the midst population
P(m) into a new parent population S(q) when the parent population
is S(i).

According to the definition of crossover, mutation and selection
in the genetic algorithm, Cij(k), Mjm(k), and SðiÞmqðkÞ are subject to:

XjXn1 j

j¼1

CijðkÞ ¼ 1 i ¼ 1;2; . . . ; jXn0j; k ¼ 0;1;2; . . . ð1Þ

MjmðkÞ ¼
Yn1

i¼1

ðPMðkÞÞh1 ð1� PMðkÞÞ1�h1

m; j ¼ 1;2; . . . ; jXn1j; k ¼ 0;1;2; . . . ð2Þ

SðiÞmqðkÞ ¼
Q

xi2SðqÞ
JkðfiÞ

, P
xj2Pm

JkðfjÞ
 !n0

Sq � Pm;

0 other;

8>><
>>: ð3Þ

where h1,h2, . . . ,hn1 are the Hamming distances between the indi-
vidual P(j) and P(m), and Pm(k) is the mutation probability in step k.

2.1.2. Adaptive mutation probability
In the genetic algorithm, the mutation probability is fixed for

entire optimum process of the domain in question, and the adap-
tive mutation probability is given based on the mutation probabil-
ity method advised by Doctor Jin-tao MA (Ma, 1995).

At the beginning of the mutation process, the mutation probability
Pm(k) is supposed to be a larger value to spur the individual mutation,
whose fitness value is small. The Pm(k) value is decreased to restrain
the individual mutation to improve the computing speed and widen
the searching scale when the result is near the optimum. The adaptive
mutation probability is computed as:

Pi
mðkÞ ¼

PM fi P fa;

PM 1þ EXP g fa�fi
fa

� �
EXPð�kÞ

� �
other;

(
ð4Þ

where Pi
mðkÞ is the mutation probability of the ith individual at the k

iteration, fa is the average fitness value, fi is the fitness value of the
ith individual xi, k is the iteration number, PM is the initialization of
mutation probability, and g is a constant.

2.1.3. Whole annealing selection
The new parent population Fk is generated randomly and inde-

pendently into N individuals from the population Pk according to
proportion in the genetic algorithm. If the repeat selection is per-
mitted, the selection probability of xi 2 Pk is calculated as

PðxiÞ ¼ JkðfiÞ
�X

xj2Pk

JkðfjÞ;

where J(f(x)) is a fitness function, J : R! R is a rigorous increasing
function, and J(f(x)) > 0.

The Boltzmann probability selection mechanism in the anneal-
ing algorithm is imported into GA, and the filial generation produc-
ing method under the whole annealing selection is calculated as:

PðxiÞ ¼ efi=Tk
X
xj2Pk

efi=Tk

,
; ð5Þ

where Tk is the annealing temperature close to 0, and formula (5) is
the selection probability under the whole annealing selection. The
corresponding fitness function is calculated as:

Jkðf ðxÞÞ ¼ ef ðxÞ=Tk : ð6Þ

2.2. Global astringency of the AAGA

In the AAGA, the Boltzmann probability selection mechanism is
imported into the GA from the annealing algorithm. That is to say,
the fitness function changes to formula (6) when a set Fk is gener-
ated from another set Pk according to probability formula (5). Thus,
formula (3) in GA will change to:

SðiÞmqðkÞ ¼
Q

xi2SðqÞ
efi=Tk

, P
xj2Pm

efi=Tk

 !n0

SðqÞ � Pm;

0 other:

8>><
>>: ð7Þ

To simplify this problem, given that the mutation probability PM(k)
and the crossover mode are not changed along with k and that
G(Tk) = (Giq(k)), where:
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