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a b s t r a c t

In classification problems classes usually have different geometrical structure and therefore it seems
natural for each class to have its own margin type. Existing methods using this principle lead to the
construction of the different (from SVM) optimization problems. Although they outperform the standard
model, they also prevent the utilization of existing SVM libraries. We propose an approach, named 2eSVM,
which allows use of such method within the classical SVM framework.

This enables to perform a detailed comparison with the standard SVM. It occurs that classes in the
resulting feature space are geometrically easier to separate and the trained model has better generaliza-
tion properties. Moreover, based on evaluation on standard datasets, 2eSVM brings considerable profit for
the linear classification process in terms of training time and quality.

We also construct the 2eSVM kernelization and perform the evaluation on the 5-HT2A ligand activity
prediction problem (real, fingerprint based data from the cheminformatic domain) which shows
increased classification quality, reduced training time as well as resulting model’s complexity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Binary classification is a core problem in machine learning,
relevant from both theoretical and practical perspectives. Over
the past decade, Support Vector Machine (SVM) model (Cortes &
Vapnik, 1995) gained a great interest due to its good mathematical
formulation accompanied with a great number of empirical results.
Several modifications were proposed, ranging from the modifica-
tions of norms used in the main SVM’s equation (Zhang, 2004),
through considering Bayesian treatment of the problem (Tipping,
2001) to generalization from original separating hyperplanes to
hyperspheres and beyond (Le, Tran, Hoang, Ma, & Sharma, 2011).
From the perspective of our paper of crucial importance are the
generalizations which implement the idea that every class should
have its own margin type: Twin Mahalanobis SVM (Peng & Xu,
2012) and Maxi-Min Margin Machine (M4) (Huang, Yang, King, &
Lyu, 2008).

Most of existing SVM modifications have shown their superior-
ity over the classical method in some contexts and applications,
however in practice, Vapnik’s model (with later kernelization) is
still the most commonly used. This is caused in particular by the
fact that most SVM modifications require considerable amount of

time and specialist knowledge to use, while Vapnik’s model is
implemented in most machine learning packages.

This is why in this paper we introduce a Two ellipsoid SVM
(2eSVM) model which uses two distinct margins’ types and allows
easy implementation within the classical SVM framework. In fact
we treat SVM as a Black Box, and perform only the pre- and
post-processing of the data, see Fig. 1. Our approach allows not
only the use of existing SVM libraries, but also gives the ability
of careful comparison with the classical SVM modifications like
Mahalanobis SVM.

The main idea behind Maxi-Min Margin Machine (M4) (Huang
et al., 2008) on which we based our ideas, is to seek for the hyper-
plane which simultaneously maximizes the size of different mar-
gins for classes X� and Xþ. The process of finding the maximal
separating margin in the standard SVM algorithm can be seen as
searching for the biggest radius r such that the sets

X� þ Bð0; rÞ and Xþ þ Bð0; rÞ

are linearly separable, where Bð0; rÞ denotes the standard ball with
radius r centered at zero. From the geometrical and practical point
of view it is better to use two different hyperellipsoids B�ð0; rÞ and
Bþð0; rÞ (balls in different metrics) fitted for each class separately.
Consequently, one seeks for the maximal r such that the sets

X� þ B�ð0; rÞ and Xþ þ Bþð0; rÞ

are linearly separable, see Fig. 2.
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As a result, the separating hyperplane is located nearer the ‘‘ver-
tical’’ class. This is a better solution, as a big horizontal variance of
the other class suggests that more points drawn randomly from the
underlying distributions, which lay on the x axis ‘‘between’’ these
two ellipsoids, are actually members of ‘‘horizontal’’ class.

This leads to the Second Order Cone Optimization Problem
which cannot be solved by the standard SVM procedure (Huang
et al., 2008). We prove however that we can implement a similar
principle with the Black Box use of SVM by applying the following
steps:

1. transform the data (or the kernel) using a matrix computed
from the sum of classes’ covariances,

2. train a classical SVM,
3. shift a decision boundary.

Evaluation on the typical datasets shows that the first operation
allows the SVM to separate data easier and faster, while the third
helps to obtain better classification results. In particular we obtain
(see Section 6):

� a speed up of the learning process for the (both linear and kern-
elized) SVM of two to four times,
� reduction of mean number of support vectors of resulting

model for the kernelized SVM by up to 10%,
� statistically significant better generalization results than the

classical approach.

The most important differences between 2eSVM and M4 are:

� 2eSVM is much simpler to implement, as it requires just few
lines of algebraic operations,
� 2eSVM is much more robust, as it uses a SVM as an underlying

optimization problem, which is a quadratic optimization with
linear constraints, while M4 requires second order cone optimi-
zation which is a much more complex optimization problem,
� M4 requires custom optimization, while 2eSVM can be easily

integrated with almost any existing SVM library,
� However, even though 2eSVM implements similar idea to M4,

due to its approximated nature, it achieves smaller accuracy
gain.

The idea behind our method is related to the problem of finding
the best metric as well as complexity reduction techniques. Metric
learning concerns the problem of finding the best metric for given
model and data as the independent optimization problem. Meth-
ods of this type have been used to build a hybrid model using both
k-nearest neighbors and SVM concept – LM-KNN (Weinberger &
Saul, 2009). There have also been presented multiple modifications
of Support Vector Machines (Do, Kalousis, Wang, & Woznica,
2012), including incorporating the metric optimization in the core
SVM optimization itself (Zhu, Gong, Zhao, & Zhang, 2012). The
Ellipsoid SVM model (Momma, Hatano, & Nakayama, 2010) is a
particular example of such approach, where one looks for the best
fitted hyper-ellipsoid around the data to construct the correct
metric. Those methods help model to better fit the underlying
geometry of the data at the cost of additional computational
requirements and in general – increased complexity of the
problem.

On the other hand proximal SVM (Fung & Mangasarian, 2001)
changes the basic formulation of the SVM to obtain a much simpler
optimization problem. In this setting one searches for two parallel
hyperplanes, around which points of particular classes are
clustered, which are as far from each other as possible. Twin
SVM (Jayadeva, Khemchandani, & Chandra, 2007) generalized this
idea, so two hyperplanes can be non-parallel giving model better
data geometrical fitting capabilities. Main strength of these
methods lies in reduction of the complexity of the optimization
problem by either weakening the parameter constraints (Fung &
Mangasarian, 2001) or by solving multiple smaller problems
(Jayadeva et al., 2007).

The proposed method differs from the above approaches, as it is
based on the closed form of pre- and postprocessing methods of

Fig. 1. Black Box scenario of 2eSVM.

Fig. 2. Visualization of the idea on two elliptical-shaped classes (horizontal – positive samples and vertical – negative ones).
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