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a b s t r a c t

Given the posterior probability estimates of 14 classifiers on 38 datasets, we plot two-dimensional maps
of classifiers and datasets using principal component analysis (PCA) and Isomap. The similarity between
classifiers indicate correlation (or diversity) between them and can be used in deciding whether to
include both in an ensemble. Similarly, datasets which are too similar need not both be used in a general
comparison experiment. The results show that (i) most of the datasets (approximately two third) we used
are similar to each other, (ii) multilayer perceptrons and k-nearest neighbor variants are more similar to
each other than support vector machine and decision tree variants, (iii) the number of classes and the
sample size has an effect on similarity.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In machine learning, when we draw conclusions, it is condi-
tioned on the dataset we are given. When we compare two differ-
ent classification algorithms on a particular dataset, any result we
have will be true only for that particular dataset. There is no such
thing as the ‘‘best” learning algorithm. For an algorithm, there may
be a dataset where it is very accurate and another dataset where its
performance is very poor. According to the no free lunch theorem,
when we say a classification algorithm is good, we only say how
well its inductive bias matches the properties of the dataset (Wol-
pert, 1995).

In this paper, our aim is to ‘map’ well known classification
algorithms and datasets to a two-dimensional space so that we
can easily visualize how similar and how different classifiers/
datasets are. To accomplish this, we first produce two meta-
datasets, for classifiers and datasets respectively. The attributes
of those two datasets are generated from the posterior probabil-
ity estimates of 14 classifiers on the test sets of 38 datasets.
We use PCA and Isomap as linear and nonlinear dimension
reduction techniques respectively to reduce number of dimen-
sions to two and plot classifiers/datasets as points in this 2D
plane.

In Section 2, we give brief descriptions of two dimension reduc-
tion techniques we used in the paper. We give our experiments
and results in Section 3 and conclude in Section 4.

2. Dimension reduction techniques

2.1. Principal component analysis

Principal component analysis (PCA) (Rencher, 1995) projects
data points xi 2 Rd onto lower dimensional coordinates yj 2 Rp

for best information preservation. The linear projection is given by

Y ¼ XW; ð1Þ

where W is an d � p projection matrix found to maximize the var-
iance of Y. To satisfy this purpose, W contains eigenvectors (princi-
pal components) in decreasing order of respective eigenvalues of
the covariance matrix of X as columns. The top two eigenvectors
are used to reduce dimension to two.

2.2. Isomap

Isomap inherits the advantages of PCA and multidimensional
scaling (MDS) and extends these to learn nonlinear structures that
are hidden in high dimensional data (Tenenbaum, de Silva, &
Langford, 2000).

Normally to calculate the similarity of two instances, Euclidean
distance is used. However, the use of the Euclidean distance to rep-
resent pairwise distances makes the model unable to preserve the
intrinsic geometry of the manifold. Two nearby points, in terms of
Euclidean distance, may indeed be distant, because their actual dis-
tance is the path between these points along the manifold. The
length of the path along the manifold is referred to as the geodesic
distance. Isomap uses this distance metric and then performs clas-
sical MDS. Geodesic distance represents similar or different data
points more accurately than the Euclidean distance, but the task
is to estimate it accurately. Here the local linearity principle is used
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and it is assumed that neighboring points lie on a linear patch of
the manifold, so for nearby points the Euclidean distances correctly
estimate the geodesic distances. For distant points, the geodesic
distances are estimated by adding up neighboring distances over
the manifold.

Isomap finds the true dimension of nonlinear structures as long
as sufficient data is supplied. The only parameter of the method is k
which determines the neighboring information, and which should
be fine tuned to get accurate results.

3. Experiments

3.1. Experimental setup

3.1.1. Base datasets
We use a total of 38 base datasets where 35 of them are from

UCI (Blake & Merz, 2000) and 3 are from Delve (Hinton, 1996)
repositories (see Table 1).

3.1.2. Base classifiers
We use fourteen base classifiers which we have chosen to span

as much as possible the wide spectrum of possible machine learn-
ing algorithms:

(1)–(3) k-nn: k-nearest neighbor with k = 1, 3, 5.
(4)–(8) mlp: multilayer perceptron where with D inputs and K

classes, the number of hidden units is taken as D
(mlp1), K (mlp2), (D + K)/2 (mlp3), D + K (mlp4),
2(D + K) (mlp5).

(9) lp: linear perceptron with softmax outputs trained by
gradient-descent to minimize cross-entropy.

(10) c45: the most widely-used C4.5 decision tree algo-
rithm (Quinlan, 1993).

(11) ldt: this is a multivariate tree where unlike C4.5 which
uses univariate and axis-orthogonal splits uses splits
that are arbitrary hyper-planes using all inputs (Loh
& Shih, 1997).

(12)–(14) svm: support vector machines (SVM) with a linear ker-
nel (sv1), polynomial kernel of degree 2 (sv2), and a
radial (Gaussian) kernel (svr). We use the LIBSVM
2.82 library that implements pairwise SVMs (Chang
& Lin, 2001).

3.1.3. Division of training, validation, and test sets
The methodology is as follows: A dataset is first divided into

two parts, with 1/3 as the test set, test, and 2/3 as the training
set, train-all. The training set, train-all, is then resampled using
5 � 2 cross-validation (cv) (Dietterich, 1998) where two-fold cv is
done five times (with stratification) and the roles swapped at each
fold to generate ten training and validation folds, trai, vali,
i = 1, . . . ,10. trai are used to train the base classifiers. These ten
trained algorithms are tested on the same test and we have ten testi

accuracy results on which we run the dimension reduction
methods.

3.2. Meta-datasets

From the results of base-classifiers on all datasets we generate
two meta-datasets for classifiers and datasets, respectively.

The first meta-dataset contains 14 instances for the classifiers.
From each of the 38 datasets, we randomly take 30 instances and
the prediction of the classifier for the correct class is recorded,
when concatenated this forms a 30 � 38 = 1140 dimensional vector
which is the data point for a classifier. So we have a dataset of size
14 � 1140.

The second meta-dataset contains 38 instances for datasets. For
each of the 14 classifier, its accuracy on the ten test folds need be
reported. For this, we divide the percentage into 40 equal intervals
(0–2.5, 2.5–5, . . . ,95–97.5, 97.5–100) and count how many of the
ten testi accuracy results fall into each interval (that is we form a
histogram with 40 bins). So we have a dataset of size 14 �
(14 � 40 = 560).

3.3. Results

Fig. 1 shows the plot of classifiers and datasets after PCA and
Isomap. If we look at Fig. 1(a), after both PCA and Isomap, we see
that multilayer perceptron (mlp) algorithms, k-nearest neighbor
algorithms (k-nn) and decision tree algorithms form clusters of
their own. This is expected; changing the hyper-parameter causes
a slight change. k-nn variants get similar to other algorithms as k
increases. Support vector machine (svm) with the quadratic kernel
seems an outlier. Linear perceptron (lp) is similar to mlp variants
which may be due to easiness of the datasets where linear models
work nearly as well as nonlinear methods.

If we look at Fig. 1(b), we see that almost two third of all data-
sets are similar to each other. Therefore, one must be very careful
in selecting datasets to include in a comparison experiment. Other
than those, there are five different dataset groups (pim,hab,zoo,e-
co), (mon,bup,cyl), (cmc,flg,gla), (tae), (yea). Though the exact coor-
dinates may differ, both PCA and Isomap seem to be finding the
same clustering and in that respect, there is not much difference
between the results of the two methods.

We then checked if the number of classes is a factor. For this, we
divide the datasets into two, with K = 2 class and K > 2 class prob-

Table 1
Datasets.

Dataset Class Instance

Australian 2 690
Balance 3 625
Breast 2 699
Bupa 2 345
Car 4 1728
Cmc 3 1473
Credit 2 690
Cylinder 2 540
Dermatology 6 366
Ecoli 8 336
Flags 8 194
Flare 3 323
Glass 6 214
Haberman 2 306
Heart 2 270
Hepatitis 2 155
Horse 2 368
Iris 3 150
Ionosphere 2 351
Monks 2 432
Mushroom 2 8124
Nursery 5 12960
Optdigits 10 3823
Pageblock 5 5473
Pendigits 10 7494
Pima 2 768
Ringnorm 2 7400
Segment 7 2310
Spambase 2 4601
Tae 3 151
Thyroid 4 2800
Tictactoe 2 958
Titanic 2 2201
Twonorm 2 7400
Vote 2 435
Wine 3 178
Yeast 10 1484
Zoo 7 101
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