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a b s t r a c t

Process capability indices are widely used in industry to measure the ability of firms or their suppliers to
meet quality specifications. The index CPP , which is easy to use and analytically tractable, has been suc-
cessfully developed and applied by competitive firms to dominate highly-profitable markets by improv-
ing quality and productivity. Hypothesis testing is very essential for practical decision-making. Generally,
the underlying data are assumed to be precise numbers, but in general it is much more realistic to con-
sider fuzzy values, which are imprecise numbers. In this case, the test statistic also yields an imprecise
number, and decision rules based on the crisp-based approach are inappropriate. This study investigates
the situation of uncertain or imprecise product quality measurements. A set of confidence intervals for
sample mean and variance is used to produce triangular fuzzy numbers for estimating the CPP index.
Based on the d-cuts of the fuzzy estimators, a decision testing rule and procedure are developed to eval-
uate process performance based on critical values and fuzzy p-values. An efficient computer program is
also designed for calculating fuzzy p-values. Finally, an example is examined for demonstrating the appli-
cation of the proposed approach.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Process capability is a critical performance measure addressing
process results with regard to product specifications. Process capa-
bility indices thus are widely used in industry to measure the abil-
ity of firms or their suppliers to meet quality specifications.
Greenwich and Jahr-Schaffrath (1995) introduced an ‘‘incapability”
index called CPP , which is easy to use and analytically tractable. The
formulae of CPP is easy to understand and apply, but in practice the
parameters, process mean l and process standard deviation r, of
CPP are generally unknown, and the CPP value must be estimated
based on a random sample X1;X2; . . . ;Xn. Chen (1998) obtained
the probability density function (PDF) and the rth moments of
the uniformly minimum variance unbiased estimator (UMVUE) of
CPP . Furthermore, Pearn and Lin (2001) investigated the statistical
properties of the estimated CPP and derived the upper confidence
limit of CPP . A decision-making procedure is also devised for assess-
ing whether the process satisfies the preset quality requirement.
Lin and Pearn (2005) presented an efficient SAS computer program
for calculating the p-value and critical value for hypothesis testing.
Furthermore, Lin (2007) obtained the posterior probability of
which the investigated process is capable based on CPP using the
Bayesian approach. Additionally, Pearn, Ko, and Wang (2002) pre-

sented a CPP multiple process performance analysis chart (MPPAC)
for processes possessing multiple independent characteristics.
Moreover, Chen, Chen, and Li (2005) defined a price index, and
constructed a supplier capability and price analysis chart (SCPAC)
based on the price index and the index CPP for supplier evaluation.

Most studies on process capability analysis are based on crisp
estimates involving precise output process measurements. How-
ever, measurements of product quality sometimes cannot be pre-
cisely recorded or collected, making imprecise or fuzzy numbers
the only feasible means of describing such data. Since measures
of product quality often lack precision, a new trend has been in-
spired of combining randomness and fuzziness in assessing pro-
cess capability. Yongting (1996) first proposed the fuzzy attribute
of quality, a formula of fuzzy process capability index C�P , which
can be defined as the probability of fuzzy up-to-standard products
produced by production processes, is proposed for dealing with
fuzzy processes. Lee (2001) and Hong (2004) obtained the mem-
bership functions of the mean and standard deviation of fuzzy
numbers, then conducted the CPK index estimation presented by
fuzzy number and approximated the membership function of the
CPK index. Chen, Chen, and Lin (2003) incorporated the fuzzy infer-
ence using index CPL for processes with bigger-the-better type
quality characteristics, and employed a concise score concept to
represent the grade of process capability. Furthermore, Tsai and
Chen (2006) considered the applications of index CP in the fuzzy
environment, and formulated a pair of nonlinear functions to
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identify the approximate membership function. Additionally,
Parchami, Mashinchi, Yavari, and Maleki (2005) and Parchami
and Mashinchi (2007) introduced fuzzy process capability indices
and discussed the relationships between them in the cases where
the specification limits are triangular fuzzy numbers rather than
crisp numbers.

There are few studies on assessing process capability based on
CPP with consideration of measurements with uncertainty. Re-
cently, Chen and Chen (2008) assessed multiprocess capability
using distance value of a confidence box. A fuzzy inference method
was proposed for determining the distance value, and this ap-
proach can determine the optimal process. Although their ap-
proach compares capability among processes, it cannot be
applied to determine single process capability for process with fuz-
zy data. To overcome this problem, this study describes a simple
but practical method by an extended version of the approach of
Buckley and Eslami (2004), Buckley (2004, 2005). A set of confi-
dence intervals of the sample mean and variance is established
to yield triangular fuzzy numbers for estimating CPP . Moreover, a
three-decision testing rule and a step-by-step procedure are devel-
oped to assess process performance using critical value and fuzzy
p-value. The three-decision testing rule can be considered a natural
generalization of the traditional crisp-based test, and can be re-
duced to the traditional process capability test by binary deci-
sion-making in situations involving precise data. The remainder
of this paper is organized as follows. Section 2 briefly discusses
the crisp estimation for the index CPP . Next, Section 3 introduces
the d-cuts of fuzzy estimation for CPP . Section 4 then proposes
the decision rules and testing procedures based on critical value
and fuzzy p-value for assessing process capability, and provides
an R computer program to calculate fuzzy p-values. To illustrate
the applicability of the proposed approach, an example is pre-
sented in Section 5. Finally, conclusions are given in the last
section.

2. The process incapability index CPP and its crisp estimation

This section introduces the index CPP , and then briefly discusses
the statistical properties of the estimator of CPP for crisp data.

2.1. The index CPP

The index CPP is defined as

CPP ¼
l� T

D

� �2

þ r
D

� �2
; ð1Þ

where l is the process mean, r is the process standard deviation,
USL is the upper specification limit, LSL is the lower specification
limit, T ¼ ðUSLþ LSLÞ=2 is the target value, and D ¼ ðUSL� LSLÞ=6.
Let Cia ¼ ðl� TÞ2=D2 and CiP ¼ r2=D2; CPP can be expressed as
CPP ¼ Cia þ CiP . The index Cia measures the relative process depar-
ture, which reflects process inaccuracy. The index CiP measures
the process variation relative the specification tolerance, which re-
flects process imprecision. Thus, CPP provides an uncontaminated
separation between information concerning process accuracy and
process precision.

Process yield, the percentage of processed product units passing
inspection, is a standard numerical measure of process perfor-
mance in manufacturing. The expected process yield of given val-
ues of Cia and CiP is
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where Uð�Þ is the cumulative distribution function (CDF) of the stan-
dard normal distribution N(0,1). We obtain that the CPP value is
increasing by Cia or CiP , and the process yield is decreasing by Cia

or CiP . Thus, it indicates that increment of process departure or pro-
cess variation would result in a larger CPP value and diminish the
process yield.

The CPP value can directly reflect the process incapability. In
general, a process is called ‘‘inadequate” if CPP > 1:00, called ‘‘mar-
ginally capable” if 0:57 < CPP 6 1:00, called ‘‘capable” if
0:44 < CPP 6 0:57, called ‘‘good” if 0:36 < CPP 6 0:44, called ‘‘excel-
lent” if 0:25 < CPP 6 0:36, and is called ‘‘super” if CPP 6 0:25. Con-
trary to other process capability indices, process capability
decreases with increasing value of CPP , which is why CPP is called
a process incapability index. Furthermore, CPP provides more infor-
mation regarding the process, including process inaccuracy and
imprecision, than other indices, thus helping better understand
the process situation of the contract manufactures to improve
quality performance.

2.2. The estimator of CPP

To estimate the yield measurement index CPP , Pearn and Lin
(2001) consider the following estimator bCPP ,

bCPP ¼
�x� T

D
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where �x ¼
Pn

i¼1xi=n, and sn ¼ ½
Pn

i¼1ðxi � �xÞ2=n�1=2 are maximum like-
lihood estimators (MLEs) of l and r, respectively, which may be ob-
tained from a stable process. The estimator bCPP can be rewritten as

bCPP ¼
CiP
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Since
Pn

i¼1ðxi � TÞ2=r2 is distributed v2
nðkÞ, a non-central chi-square

distribution with n degrees of freedom and non-centrality parame-
ter k ¼ nðl� TÞ2=r2 ¼ nCia=CiP , the estimator bCPP is distributed as
ðCiP=nÞv2

nðkÞ. The PDF of bCPP can be expressed as
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for y > 0. And the rth moment of bCPP is
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Pearn and Lin (2001) showed that bCPP is the MLE, which is also
the UMVUE of CPP . They also showed that bCPP is consistent,ffiffiffi

n
p
ðbCPP � CPPÞ converges to Nð0;2CiPCia þ 2CiPCPPÞ, and bCPP is

asymptotically efficient. The 100ð1� aÞ% upper confidence bound,
U, for CPP can be solved by the following equation (Pearn & Lin,
2001),

1� a ¼ PðCPP < UÞ ¼ PðCPP � Cia < U � CiaÞ
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Therefore, U ¼ Cia þ nbCPP=v2
1�a;nðkÞ, where v2

a;nðkÞ is the upper
ath percentile of v2

nðkÞ distribution. Since l and r2 are unknown,
we can use �x and s2

n to estimate l and r2 in practical applications.
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