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a b s t r a c t

The paper proposes a new neuron model (geometric mean neuron model) with an aggregation function
based on geometric mean of all inputs. Performance of the geometric mean neuron model was evaluated
using various learning algorithms like the back-propagation and resilient propagation on various real life
data sets. Comparison of the performance of this model was made with the performance of multilayer
perceptron. It has been shown that the geometric mean based aggregation function with resilient prop-
agation (RPROP) performs the best both in terms of accuracy and speed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Various neuron models have been purposed in the literature
(Basu & Ho, 1999; Labib et al., 1999; McCulloch & Pitts, 1943; Plate,
2000; Rumelhart, Hinton, & Williams, 1986, chap. 8; Zhang, Zhao, &
Wang, 2000). In 1986, Rumelhart et al. (1986, chap. 8) presented
the most popular multilayer perceptron (MLP) model. The aggrega-
tion function of the MLP computes the weighted arithmetic mean
of the inputs. It is well known that the number of neurons required
to solve any problem depends on the mathematical structure of the
neuron model. When real life problems are solved using standard
artificial neural network, it requires significantly large number of
neurons in the architecture. A neuron having higher order statistics
can produce superior neural network with comparatively lesser
number of neurons. For this, higher order neural networks (HONN)
have been suggested in the literature (Chaturvedi, Mohan, Singh, &
Kalra, 2004; Giles & Maxwell, 1987; Homma & Gupta, 2002; Sinha,
Kumar, & Kalra, 2000; Taylor & Commbes, 1993). Higher order neu-
rons have demonstrated improved computational power and gen-
eralization ability. However, these are difficult to train because of a
combinatorial explosion of higher order terms as the number of in-
puts to the neuron increases. Geometric mean based neuron model
shown in Fig. 1 is based on a polynomial architecture. Instead of
considering all the higher order terms, a simple aggregation func-
tion is used. The resulting neuron has fewer parameters than the
higher order neurons and is much easier to train. The geometric
mean based neuron model is based on weighted geometric mean
of all inputs. Nonlinearities in the geometric mean based neuron
model is depicted with the parameters being multiplied together.
The order of hyperplane in geometric mean based neuron (GMN)
model is higher than that of MLP, thus the GMN captures non-lin-

earity more efficiently. Back-propagation with steepest gradient
descent and resilient back-propagation algorithm is used for train-
ing of neural network.

Rest of the paper is organized as follows. In Section 2, we dis-
cuss the mathematical representation of the proposed model. In
Section 3 approximation capability of geometric mean based neu-
ron has been proved. The network architecture of feed-forward
neural network using geometric mean based model and training
of NN with back-propagation (BP) using gradient descent and resil-
ient propagation (RPROP) algorithm are discussed in Section 4.
Comparative performance evaluation with geometric mean neuron
model using benchmark data sets has been given in Section 5. Con-
clusions are given in Section 6.

2. Geometric mean neuron model

Neuron model concerns with relating function to the structure
of the neuron on the basis of its operation. The MLP model is based
on the concept of weighted arithmetic mean of the N input signal
(Hornik, Stinchombe, & White, 1989)

Weighted arithmetic mean ¼ 1
N

XN

i¼1

wi � xi ð1Þ

The proposed neuron model is based on the concept of geometric
mean. The weighted geometric mean (Opic & Gurka, 1992) of the
N inputs can be found by the summing operation as follows:

exp
XN

i¼1

wi � logðxiÞ
 !

¼ exp
XN

i¼1

logðxwi
i Þ

 !

¼ exp logðxw1
1 � � � x

wN
N Þ

� �
¼ xw1

1 � � � x
wN
N

¼ weighted geometric mean ð2Þ
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and the degree of the above polynomial in n-variables is equal to
max (w1i + w2i +� � �+ wni), similarly, the degree of a curve is equal
to the degree of the polynomial that defines the curve. Thus the
geometric mean operator f(x,w), generates a polynomial of degree
n for an n-dimensional input x using the 2n-dimensional parame-
ters w. For a fixed parameter w, the operator f then represents a
function f : R2n �Rn ! R.

The aggregation function of the new neuron model which gives
the weighted geometric mean of the N input signals of the neuron
is defined as

nety ¼ exp
XN

i¼1

wi � logðxiÞ þ b

 !
ð3Þ

where wi is adaptive parameter corresponding to the inputxi. b is
the bias of the neuron. nety is the net output passing trough the
activation function.

On applying an activation function u, the output y will be given
as

y ¼ uðnetyÞ ð4Þ

It is observed that tanh activation function works well for geometric
mean neuron model.

3. Approximation capability of geometric mean based neuron
model

Classification and prediction problem belong to a broader cate-
gory of function approximation problem. A common frame work of
the approximation is the existence of a relationship between sev-
eral input variables and one output. This unknown relationship is
built up by an approximator whose structure must be chosen such
that it represents the best possible relationship between the inputs
and output. The most common type of approximator is linear
approximator that has the advantage of being simple and cheap
in terms of its computational ability. But in real life applications
the true relationship between the input and output is non-linear.
So it will be advisable to use non-linear approximator for function
approximation. The GMN model which is based on weighted geo-
metric mean as the aggregation function can handle non-linear

relationship more efficiently Testing the approximation capability
of geometric mean based neuron model is done by using the The-
orem 1 given in Chen, Chen, and Liu (1995) and Lemma 1 of Huang
and Babri (1998). ‘‘tanh” is used as activation function in the GMN
model which is defined as follows:

f : R! R is called a tan hyperbolic function if the limits,
limx?�1f(x) = � 1, limx?0 = 0, and limx?1f(x) = 1, is true.

Following lemma is used in Theorem 1 for proving the approx-
imation capability.

Lemma 1. If f is bounded tan hyperbolic function and y(x) is
a continuous function in R for which limx?�1y(x) = A, and
limx?1y(x) = B, where A and B are constant then for any e > 0, there
exist bi, wi, bi, n such that

Xn

i¼1

bif exp wi � logðxiÞ þ bð Þð Þ � yðxÞ
�����

����� < e holds for all; x 2 Rþ

Theorem 1. Given bounded function g(x) in R and there exists limits
limx?�1g(x) and limx?1 g(x) and limx?�1g(x) – limx?1g(x), then for
any arbitrary mapping y(x) in CðRÞ for every e > 0 there exist bi, wi, bi,
n such that

Xn

i¼1

big exp wi � logðxiÞ þ bð Þð Þ � yðxÞ
�����

����� < e holds for all x 2 Rþ

The above theorem can be proved as following

Proof. We can prove the theorem in two steps:

(i) limx?0g(x) = 0 and limx?�1g(x) = A, where A can be any
arbitrary nonzero real value.

(ii) limx?0g(x) = B and limx?1g(x) = A, where A and B are
arbitrary unequal real values.

(i) Lets consider limx?0g(x) = 0 and limx?1g(x) = A, where A are
arbitrary nonzero real value. Let g1(x) = g(x)/A. Then limx?0g1

(x) = 0 and limx?1g1(x) = 1. According to Lemma 1, for every
e > 0, there exist n 2 N and b0i;wi; bi for i = 1,2, . . .,n

Fig. 1. Architecture of single hidden layer network using GMN model.
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