
Evolutionary construction and adaptation of intelligent systems

José M. Font *, Daniel Manrique, Juan Ríos
Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, Spain

a r t i c l e i n f o

Keywords:
Evolutionary computation
Intelligent systems
Rule-based systems
Fuzzy rule-based systems
Artificial neural networks
Medical prognosis

a b s t r a c t

This paper introduces evolutionary techniques for automatically constructing intelligent self-adapting
systems, capable of modifying their inner structure in order to learn from experience and self-adapt to
a changing environment. These evolutionary techniques comprise an evolutionary system that is engi-
neered by grammar-guided genetic programming, enabling the development of sub-symbolic and sym-
bolic intelligent systems: artificial neural networks and knowledge-based systems, respectively. A
context-free-grammar based codification system for artificial neural networks and rules, an initialization
method and a crossover operator have been designed to properly balance the exploration and exploita-
tion capabilities of the proposed system. This speeds up the convergence process and avoids trapping in
local optima. This system has been applied to a medical domain: the detection of knee injuries from the
analysis of isokinetic time series. The results of the evolved symbolic and sub-symbolic intelligent sys-
tems have been statistically compared with each other as part of a quantitative and qualitative perfor-
mance analysis.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Intelligent systems are built from knowledge extracted from a
specific domain (Turbam, Aronson, & Liang, 2004). The knowledge
is stored within the system in such a way that it can be processed
to infer decisions that solve problems located within the domain.
Many different kinds of intelligent systems from both the symbolic
and sub-symbolic tracks of Artificial Intelligence (AI) have been
successfully applied to knowledge areas ranging from industry
and machine control to healthcare and education. Symbolic ap-
proaches intend to reproduce intelligent behaviour in a system
built on a symbol-based representation of the world that is close
to human reasoning. Sub-symbolic approaches try to imitate hu-
man cognition processes to reproduce intelligent behaviour with-
out using symbols as an intermediate representation of real-
world objects (Jones, 2008).

Knowledge engineering is the name given to the area of sym-
bolic AI that acquires and formalizes specific knowledge from a do-
main, which is stored in a knowledge base (Gomez, Juristo, Montes,
& Pazos, 1997). The use of this kind of systems is confined to the
domain for which they were designed, for example, diagnosis of
a particular disease. Linguistic rules are a symbolic knowledge rep-
resentation able to act as an interface between human way of rea-
soning and computer processing. These rules use linguistic terms
and have an antecedent-consequent structure, composed of easy-

to-understand conditional sentences in the form ‘‘if X then Y”.
These rules are also called inference rules because they are able
to infer conclusions from current knowledge gathered from the
environment. Applications of rule-based systems (RBS) are diverse
and usually connected with solving real-world problems: medicine
(Ohsaki, Yokoi, Abe, Tsumoto, & Yamaguchi, 2006), agriculture
(Lee, Wu, & Wei, 2008), machine control (White & Lakany, 2008),
diagnosis (Alonso, Caraça-Valente, González, & Montes, 2002),
teaching and education (Canales, Peña, Peredo, Sossa, & Gutiérrez,
2007). Most of these areas use RBS to support human decision
making. In knowledge areas where there is no need for human
interaction, like machine control, RBS are designed to autono-
mously manage processes or machines. In the other areas, RBS
are executed within a changing environment where systems may
evolve over time. Take, for example, a RBS that is able to detect
whether or not a patient has an illness considering the status of
several symptoms within that patient’s organism. Those features
are defined by domain experts during the system design phase
according to the latest knowledge of the illness. When that knowl-
edge is updated due to new results from medical research into the
disease, the developed RBS, as well as the domain knowledge, be-
comes obsolete.

Artificial neural networks (ANN) are one of the most represen-
tative techniques of sub-symbolic AI. An ANN is an abstraction that
simulates biological neural systems through mathematical models
(Hassoun, 1995). This technique has been successfully applied to
pattern recognition (Chen, Tai, Wang, Deng, & Chen, 2008) and
classification problems (García-Pedrajas, Hervás-Martínez, &
Ortíz-Boyer, 2005). The main disadvantage of an ANN is the

0957-4174/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.04.070

* Corresponding author. Tel.: +34 913366907; fax: +34 913524819.
E-mail addresses: jm.font@upm.es, erfont@gmail.com (J.M. Font), dmanrique@

fi.upm.es (D. Manrique), jrios@fi.upm.es (J. Ríos).

Expert Systems with Applications 37 (2010) 7711–7720

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2010.04.070
mailto:jm.font@upm.es
mailto:erfont@gmail.com
mailto:dmanrique@ fi.upm.es
mailto:dmanrique@ fi.upm.es
mailto:jrios@fi.upm.es
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


process of designing of its inner structure and its training. An ANN
has a purpose-specific structure, and it is trained by trial-and-er-
ror. The complexity of this process grows exponentially as the size
of the network increases. As long as real-world problems require
big networks, building ANNs to solve such problems will be com-
putationally very costly.

Evolutionary computation (EC) is an area of the AI made up of a
set of techniques based on the natural evolution and selection of
the species proposed by Charles Darwin, as well as on Gregor Men-
del’s discoveries in genetics (Holland, 1992). An EC system evolves
populations of individuals starting from an initial randomly gener-
ated population that evolves through a fixed number of genera-
tions (De Jong, 2006). Generation by generation, the population is
subjected to selection, crossover, mutation and replacement oper-
ators until it reaches the individual that codifies the optimal solu-
tion to the problem. EC has been successfully applied to solve
searching and optimization problems (Scully & Brown, 2008), such
as the generation of both symbolic (Couchet, Font, & Manrique,
2008, 2009) and sub-symbolic (Couchet, Manrique, & Porras,
2007; Manrique, Ríos, & Rodríguez-Patón, 2006) self-adapting
intelligent systems. Self-adapting systems can be applied to several
different problems, evolving and adapting in tune with the prob-
lems: they are robust systems (Podgorelec, Kokol, Stiglic, Hericko,
& Rozman, 2005). Another advantage of generating intelligent sys-
tems through EC is that it avoids the bottlenecks within the knowl-
edge-based and neural systems development process. In
knowledge-based systems, this drawback is due to a knowledge
elicitation process that is highly dependant on the domain expert.
In neural systems, it is caused by the trial-and-error design
process.

Genetic Programming (GP), proposed by John R. Koza in the
early 1990s (Koza, 1992) (Langdon & Poli, 2002), is one of EC’s most
representative techniques. Its special feature is that it works with
individuals that codify programs of non-fixed length (Michal, Ivry,
Schalit-Cohen, Sipper, & Barash, 2007). Each individual in the GP
population is a program that solves a given problem. A key draw-
back of GP is that it does not solve the closure problem (Koza,
1992): it can generate invalid individuals not belonging to the
solution space during the evolutionary process. Processing these
individuals increases the computational cost during the GP execu-
tion. In addition, the size of the GP individuals escapes control due
to a phenomenon called code bloat (Panait & Luke, 2004).

Grammar-Guided Genetic Programming (GGGP) is a GP special-
ization aiming to solve the closure problem. It uses a Context-Free
Grammar (CFG) to generate the language whose words are the
whole set of individuals that codify a solution to a given problem
(Whigham, 1995; Wong & Leung, 1995). Individuals are derivation
trees of the CFG that, when the algorithm starts, are generated by a
grammar-based initialization method. This method cannot gener-
ate invalid individuals because they are not contained in the lan-
guage described by the CFG (O’Neil, 2003). The initialization
method plays a very important role, as it influences the later con-
vergence process of the evolutionary system (García-Arnau, Manri-
que, Ríos, & Rodríguez-Patón, 2007). The design of the crossover
operator of a GGGP system is also responsible for solving the clo-
sure problem in such a way that the crossover of two valid individ-
uals must generate a valid offspring. To avoid code bloat it is
possible to set a parameter to control the size of the generated der-
ivation trees in both the initialization process and the application
of the crossover operator. One of the most representative operators
is the Fair crossover. The Fair crossover solves this problem by con-
trolling the size of the parts that the crossed individuals exchange
(Crawford-Marks & Spector, 2002). Despite its simplicity, this
control is very exhaustive and interferes with the operator’s
exploration capability. Another important crossover operator is
Whigham’s crossover (Whigham, 1995). This operator improves

the exploration capability, as well as solving the closure problem.
Even so, this operator still does not properly explore the search
space, especially when working with ambiguous CFGs (Couchet,
Manrique, Ríos, & Rodríguez-Patón, 2007; Hoai & McKay, 2002).

This paper presents an improved GGGP system. It includes both
a grammar-based initialization method and a grammar-based
crossover operator whose combined application boosts the search
space exploration and exploitation capabilities. This system takes
advantage of the grammar’s ambiguity, a property whereby differ-
ent derivation trees represent the same sentence. This is a power-
ful and very efficient EC technique. The proposed system has been
specifically designed to be able to construct and automatically self-
adapt (robust) symbolic and sub-symbolic intelligent machines:
rule- and fuzzy rule-based systems, and artificial neural networks.
To do so, we have developed three different CFGs and codification
systems. These automatically generated intelligent systems have
been applied to a real-world problem located within the medical
domain knowledge: the study of isokinetic time series for injury
detection, diagnosis, rehabilitation and injury prevention (Couchet
et al., 2008; Gioftsidou et al., 2008). All this is based on the analysis
of isokinetic curves output by an isokinetic dynamometer on which
patients exercise a muscle or joint.

2. Evolving intelligent systems

The proposed process for evolving intelligent systems is based
on GGGP. Given a context-free grammar G, defined as a string-
rewiring system comprising a 4-tuple G = (RN, RT, S, P)/RN \ RT = Ø,
where RN is the alphabet of non-terminal symbols, RT is the alpha-
bet of terminal symbols, S represents the start symbol or axiom of
the grammar, and P is the set of production rules, written in Back-
us-Naur Form. The individuals that are part of the genetic popula-
tion codify a sentence of the language generated by the grammar
as a derivation tree. This tree is a possible solution to a problem.
Any GGGP system is able to find solutions to any problem whose
syntactic constraints can be formally defined by a CFG. The initial-
ization method and the crossover operator have to operate accord-
ing to these constraints. This assures that they will be enforced
during the evolutionary process and prevents individuals not
belonging to the CFG-based language from being generated. This
leads to the definition of both a grammar-based initialization
method and a crossover operator.

2.1. Initialization method for evolving intelligent systems

The initialization method for evolving intelligent systems (IM-
EIS) is a grammar-based procedure for generating the initial popu-
lation. To do this, it chooses the productions that generate
individuals belonging to the CFG-based language not exceeding a
fixed maximum depth rather than at random. This prevents code
bloat. For clarity’s sake, we have defined a CFG GRBS = (RN, RT, S, P)
shown in Table 1a for use as an example throughout this section.

GRBS generates a language composed of rule-based knowledge
bases capable of detecting human knee injuries according to four
knee-related input features. The input data used for prognosis
has been taken from series of knee exercises performed by several
patients. These data are composed of four variables named TorMax,
TorMin, angTorMax and angTorMin. These variables refer to the
maximum and minimum values of the torque (strength) exerted
by the patient during the exercise and their related knee angle val-
ues. Every possible derivation tree generated by the grammar is
composed of a non-fixed number of rules of the form if ANTECED-
ENT then CONSEQUENT. Each rule can have multiple (and at least
one) antecedents but only one consequent. The consequent states
the output of the rule, that is, the prognosis: normal or injured.

7712 J.M. Font et al. / Expert Systems with Applications 37 (2010) 7711–7720



Download English Version:

https://daneshyari.com/en/article/386172

Download Persian Version:

https://daneshyari.com/article/386172

Daneshyari.com

https://daneshyari.com/en/article/386172
https://daneshyari.com/article/386172
https://daneshyari.com

