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a b s t r a c t

This paper deals with the delay-dependent asymptotic stability analysis problem for a class of fuzzy bidi-
rectional associative memory (BAM) neural networks with time-varying interval delays and Markovian
jumping parameters by Takagi–Sugeno (T–S) fuzzy model. The nonlinear delayed BAM neural networks
are first established as a modified T–S fuzzy model in which the consequent parts are composed of a set of
Markovian jumping BAM neural networks with time-varying interval delays. The jumping parameters
considered here are generated from a continuous-time discrete-state homogeneous Markov process,
which are governed by a Markov process with discrete and finite-state space. The new type of Markovian
jumping matrices Pk and Qk are introduced in this paper. The parameter uncertainties are assumed to be
norm bounded and the delay is assumed to be time-varying and belong to a given interval, which means
that the lower and upper bounds of interval time-varying delays are available. A new delay-dependent
stability condition is derived in terms of linear matrix inequality by constructing a new Lyapunov–Kra-
sovskii functional and introducing some free-weighting matrices. Numerical examples are given to dem-
onstrate the effectiveness of the proposed methods.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the dynamics of neural networks such as
cellular neural networks (CNNs) (Cao & Wang, 2005), Hopfield neu-
ral networks (HNNs) (Hopfield, 1982) and bidirectional associative
memory (BAM) (Kosko, 1988) have been deeply investigated in
recent years due to its applicability in solving some image process-
ing, signal processing, optimization, pattern recognition problems,
fixed point computations and other areas. In practice, time delays
often occur in many dynamic systems, such as rolling and biolog-
ical systems, metallurgical processes, network systems, and so
on. In the past decade, stability analysis and synthesis have been
addressed extensively for time-delay systems, and a large amount
of research results has been reported in the literature (Chen, Lam,
& Xu, 2006; Liu, Han, & Li, 2009; Shen & Wang, 2008; Sun, Wang, &
Zhao, 2008; Sun, Zhao, & Hill, 2006; Wang & Zhao, 2007). The exist-
ing results can be classified into two types: delay-independent cri-
teria (Arik, 2004) and delay-dependent criteria (Liao, Liu, & Zhang,
2006; Zhang, Wei, & Xu, 2007), and references therein. The former
is irrespective of the size of the delay and the later is concerned
with the size of the delay. It has been shown that the delay-depen-
dent stability conditions are generally less conservative than the
delay-independent ones, especially when the size of the delay is

small. The stability analysis of BAM neural networks with delays
has attracted considerable interest, see, for example Chen, Huang,
Liu, and Cao (2006), Rao and Phaneendra (1999) and references
therein.

Hybrid systems driven by continuous-time Markov chain have
been used to model many practical systems, where they may expe-
rience abrupt changes in their structure and parameters (Lou & Cui,
2007b; Mao, 2002; Sworder & Rogers, 1983; Willsky & Rogers,
1979). Stochastic neural network with Markovian jumping param-
eters is one of such hybrid systems, where the parameters are gov-
erned by a discrete-state homogeneous Markov process, and every
state denotes a switching mode. For Markovian switching neural
networks, there are some developments in the recent years. For
example Wang, Liu, Yu, and Liu (2006) studied the exponential sta-
bility of neural networks with discrete time-invariant delays,
Huang, Ho, and Qu (2007) considered a stochastic neural network
with discrete time-delays and parameter uncertainties. Recently,
linear matrix inequality (LMI)-based stochastic exponential stabil-
ity was proposed in Lou and Cui (2007a) for Markovian jumping
BAM neural networks with time-varying delays. In Lou and Cui
(2007b) and Li, Chen, Zhou, and Lin (2008), the problem of delay-
dependent stochastic stability for a class of time-delay HNNs with
Markovian jump parameters was considered.

Among various methods developed for the analysis and synthesis
of complex nonlinear systems, fuzzy logic control is an attractive and
effective rule-based one. In many of the model-based fuzzy control

0957-4174/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.06.025

* Corresponding author. Tel.: +91 451 2452371; fax: +91 451 2453071.
E-mail address: pbalgri@rediffmail.com (P. Balasubramaniam).

Expert Systems with Applications 38 (2011) 121–130

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2010.06.025
mailto:pbalgri@rediffmail.com
http://dx.doi.org/10.1016/j.eswa.2010.06.025
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


approaches, the well-known T–S fuzzy model (Takagi & Sugeno,
1985) is a popular and convenient tool in functional approximations.
During the last decades, considerable attention has been paid to the
stability analysis and control synthesis of T–S fuzzy systems (Chen,
Liu, & Tong, 2007; Gao & Chen, 2007; Lin, Wang, & Lee, 2006; Lin,
Wang, Lee, He, & Chen, 2007; Tong & Li, 2002; Tong, Wang, & Qu,
2007). Recently, the T–S fuzzy model approach has been used to
investigate nonlinear stochastic time-delay systems (Wang, Ho, &
Liu, 2004; Zhang, Xu, Zong, & Zou, 2007) and nonlinear Markovian
jump systems (Nguang, Assawinchaichote, Shi, & Shi, 2005a; Ngu-
ang, Assawinchaichote, Shi, & Shi, 2005b; Wu & Cai, 2006; Wu &
Cai, 2007). In recent years, the concept of incorporating fuzzy logic
into a neural network has grown into a popular research topic
(Huang, 2006; Huang, Ho, & Lam, 2005; Li, Chen, Lin, & Zhou, 2009;
Li, Chen, Zhou, & Qian, 2009; Liu & Shi, 2009; Lou & Cui, 2007b). In
Lou and Cui (2007b), the global asymptotic stability problem of T–
S fuzzy BAM neural networks with time-varying delays and param-
eter uncertainties is considered. In Lou and Cui (2007b), the general-
ized T–S fuzzy models can be used to represent some complex
nonlinear systems by having a set of nonlinear delayed systems as
its consequent parts (Cao & Frank, 2000). To the best of the authors’
knowledge, the robust stability problem for uncertain fuzzy BAM
neural networks with Markovian jumping and time-varying interval
delays has not been fully investigated, which is very challenging and
remains as an open issue.

In this paper, we contribute to the development of stability
analysis of Markovian jumping fuzzy BAM neural networks with
time-varying interval delays. The dynamical system under consid-
eration consists of time-varying discrete delays without any
restriction on upper bounds of derivatives of time-varying delays.
A new type of Markovian jumping matrices Pk and Qk is introduced
to derive several sufficient conditions for delay-dependent stability
analysis of fuzzy BAM neural networks. A feature of the reported
results is that delay-range-dependent robust stability problem is
investigated by constructing a Lyapunov functional including both
lower and upper bounds of delay and utilizing the free-weighting
matrix method (He, Wang, Lin, & Wu, 2007; He, Wu, She, & Liu,
2004). Another feature of the results lies in that a new method is
proposed to estimate the upper bound of the derivative of Lyapu-
nov functional without ignoring some useful integral terms.
Delay-range-dependent robust stability conditions are presented
in terms of LMIs, which can be readily verified by using standard
numerical software. Numerical examples are given to illustrate
the effectiveness of the proposed results.

The rest of this paper is organized as follows. Section 2 states
the problem description and preliminaries. Section 3 includes the
sufficient conditions for delay-dependent stability analysis and
Section 4 provides delay-dependent robust stability criterion for
the system. Section 5 provides illustrative examples and Section
6 concludes the paper.

Notation: Throughout this paper, for symmetric matrices X and
Y, the notation X P Y (X > Y) means that X � Y is positive-semidef-
inite (positive-definite); MT denotes the transpose of the matrix M;
I is the identity matrix with appropriate dimension; ðX;F;PÞ is a
probability space with X as the sample and F as the algebra of the
subsets of the sample space; Eð�Þ stands for the expectation opera-
tor with respect to the given probability measure P; and matrices,
if not explicitly stated, are assumed to have compatible dimen-
sions. ‘‘*” denotes a block that is readily inferred by symmetry.

2. Problem description and preliminaries

Given a probability space ðX;F;PÞ; fgt ; t P 0g is a homoge-
neous finite-state Markovian process with right continuous trajec-
tories and taking values in finite set S = {1,2, . . . ,s} with the initial

model g0. Let P ¼ ½pkk� �; k; k
� 2 S denotes the transition rate matrix

with transition probability

PrðgtþDt ¼ k0jgt ¼ kÞ ¼ pkk0Dt þ oðDtÞ; k – k0

1þ pkkDt þ oðDtÞ; k ¼ k0

(

where Dt > 0, limDt?0(o(Dt)/Dt) = 0, and pkk0 is the transition rate
from mode k to mode k0, satisfying pkk0 P 0 for k – k0 with pkk ¼
�
Ps

k0¼1;k0–kpkk0 ; k; k
0 2 S.

Consider the following fuzzy BAM neural networks with time-
varying delays and Markovian jumping parameters as

_uiðtÞ ¼ �aiðgðtÞÞuiðtÞ þ
Pn
j¼1

bjiðgðtÞÞFjðv jðtÞÞ

þ
Pn
j¼1

cjiðgðtÞÞFjðv jðt � qðtÞÞÞ þ Ii;

_v jðtÞ ¼ �djðgðtÞÞv jðtÞ þ
Pm
i¼1

eijðgðtÞÞGiðuiðtÞÞ

þ
Pm
i¼1

fijðgðtÞÞGiðuiðt � sðtÞÞÞ þ Ij

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð1Þ

for i = {1,2, . . . ,m}, j = {1,2, . . . ,n}, t > 0, where ui(t) and vj(t) denote
the activations of the ith neurons and jth neurons, respectively;
Fj(�) and Gi(�) stand for the signal functions of the ith neurons and
jth neurons, respectively; ai(g(t)) and dj(g(t)) are positive constants,
they stand for the rate with which the cell i and j reset their poten-
tial to the resting state when isolated from the other cells and in-
puts: bji(g(t)), cji(g(t)), eij(g(t)) and fij(g(t)) denote the synaptic
connection weights; Ii and Ij denote the external inputs at time t.
The bounded function s(t) and q(t) represent unknown delays of
systems and satisfy

h1 6 sðtÞ 6 h2; _sðtÞ 6 l; ð2Þ
q1 6 qðtÞ 6 q2; _qðtÞ 6 g: ð3Þ

(A) We assume that there exist positive w1
i ;w

2
j such that

jFjðx1Þ � Fjðx2Þj 6 w2
j jx1 � x2j; jGiðx1Þ � Giðx2Þj 6 w1

i jx1 � x2j ð4Þ

for all x1; x2 2 R; x1 – x2, where w1
i > 0; w2

j > 0 denote Lipschitz
constant, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

The system (1) is supplemented with initial values given by

uiðtÞ ¼ /uiðtÞ; t 2 ½�h2;0�; i ¼ 1;2; . . . ;m;

v jðtÞ ¼ /vjðtÞ; t 2 ½�q2;0�; j ¼ 1;2; � � � ;n;

(

where /ui(t), /vj(t) are continuous functions defined on [�h2,0] and
[�q2,0], respectively.

The system (1) is equivalent to the vector form as follows:

_uðtÞ ¼ �AðgtÞuðtÞ þ BðgtÞFðvðtÞÞ þ CðgtÞFðvðt � qðtÞÞÞ þ I;
_vðtÞ ¼ �DðgtÞvðtÞ þ EðgtÞGðuðtÞÞ þ FðgtÞGðuðt � sðtÞÞÞ þ I;

�
ð5Þ

where

u ¼ ðu1;u2; . . . ;umÞT ; v ¼ ðv1;v2; . . . ; vnÞT ;

AðgtÞ ¼ diagða1ðgtÞ; a2ðgtÞ; . . . ; amðgtÞÞ;
DðgtÞ ¼ diagðd1ðgtÞ; d2ðgtÞ; . . . ;dnðgtÞÞ;

BðgtÞ ¼ ðbjiðgtÞÞn�m

� �T
; CðgtÞ ¼ ðcjiðgtÞÞn�m

� �T
;

I ¼ ðI1; I2; . . . ; ImÞT ;

EðgtÞ ¼ ðeijðgtÞÞm�n

� �T
; FðgtÞ ¼ ðfijðgtÞÞm�n

� �T
; I ¼ ðI1; I2; � � � ; InÞT ;

and nonlinear active functions

FðvðtÞÞ ¼ Fjðv jðtÞÞn�1; Fðvðt � qðtÞÞÞ ¼ Fjðv jðt � qðtÞÞÞn�1;
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