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a b s t r a c t

This study introduces weighted operation structures (WOS) to program engineering problems, in which
each WOS adopts a fixed binary tree topology. The first WOS layer serves as the parameter input
entrance. The target is produced at the eventual layer using both values and a mathematical formula.
Each WOS element is operated by two front nodal inputs, an undetermined function, and two undeter-
mined weights to produce one nodal output. This study proposes the novel concept of introducing
weights into a WOS. Doing so provides two unique advantages: (1) achieving a balance between the influ-
ences of two front inputs and (2) incorporating weights throughout the generated formulas. Such a for-
mula is composed of a certain quantity of optimized functions and weights. To determine function
selections and proper weights, genetic algorithm is employed for optimization. Case studies herein
focused on three kinds of concrete-typed specimen strengths: (1) concrete compressive strength, (2) deep
beam shear strength, and (3) squat wall shear strength. Results showed that the proposed WOS can pro-
vide accurate results that nearly equal the results obtainable using the familiar neural network. The
weighted formula, however, offers a distinct advantage in that it can be programmed for practical cases.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial intelligence (AI) approaches have been applied in neu-
ral networks (NN), fuzzy logic, support vector machines, genetic
algorithms (GA), genetic programming (GP) and so on. Each ap-
proach offers merits in particular applications. NN is the most
familiar AI approach for tasks involving AI learning, and many
NN derivatives have been developed and applied in various catego-
ries (Behzad, Asghari, Eazi, & Palhang, 2009; Mehrjoo, Khaji,
Moharrami, & Bahreininejad, 2008; Tsai, 2009). However, NN is
primarily argued as a black box model due to the massive size of
nodes and connections within its structure. Since being first pro-
posed by Koza (1992), GP has earned significant attention in terms
of its ability to model nonlinear relationships for input–output
mappings. GP creates solutions as programs (formulas) to solve
problems with an operation tree. However, coefficient constants
are quite important to balance nodal input influences in a pro-
grammed formula. This paper introduces weights to tree connec-
tions and finally generates a fully weighted formula. The
proposed model is a weighted operation structure (WOS) and is
optimized by GA.

Concrete is a complex material widely used due to its strong
capacity to withstand compression. However, identifying the spe-
cific mechanics of concrete and its derivatives is a difficult task.
Predicting strength capacity is made more difficult still due to
the reliance of such on identified mechanics. Using an AI approach
represents an alternative method for predicting strengths that is
able to achieve a high level of accuracy.

The main purpose of this paper was to develop a WOS and then
apply it to predict the specimen strengths of concrete and its deriv-
atives. Results focused on assessing WOS performance and pre-
dicted strengths with values and formulas.

The remaining sections of this paper include Section 2: pro-
posed WOS and GA optimization; Section 3: predicting specimen
strengths of concrete cylinders, reinforced-concrete deep beams,
and reinforced-concrete squat walls; Section 4: suggestions for fur-
ther studies and future work, and Section 5: conclusions.

2. Weighted operation structure optimized using a genetic
algorithm

The WOS adopted a layer number (NL) setting (see Fig. 1), with
each node x1

i in the first layer one of the input parameters (includ-
ing a unit parameter ‘‘1”):

x1
i ¼ one 1 P1 P2 . . . Pj . . . PNIð Þ; j ¼ 0 � NI; ð1Þ
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where x1
i represents nodes in the first layer and i denotes a related

node number; Pj is the jth input parameter; and NI is the number of
inputs. Each x1

i node selects one attached Pj.
Layers from the second to the ‘eventual’ (i.e., the layer immedi-

ately following the NLth) use operation nodes to calculate values in
top-down order (see Fig. 2). For two adjacent layers, x represents
front nodes, which are treated as layer inputs, and y denotes back
nodes, which are treated as layer outputs. A y is calculated by oper-
ations of two front x values. Operations involve two weights (w)
and one function (F). Elements in GP and WOS are different in
terms of connection weight. Number of scenarios for a GP element
depends on number of function candidates and is, therefore, finite.
However, WOS introduces two complex weights to balance nodal
input influences. Number of scenarios for each WOS element is
infinite. Such an improvement provides merits that include: (1)
ability to search a wide territory range with an infinite number
of combination variations and (2) the presence of weight coeffi-
cients throughout output formulas. Certainly, calculating both
appropriate weights and functions for a WOS is more time con-
suming than for a GP, but worthy.

The layer after the NLth is called the ‘‘eventual layer” in the final
output/formula. The node in the eventual layer is either an output
node (O) or a back operation node (y). Therefore, parameter selec-
tions should be applied to the 2NL nodes in the first layer. There are
2NL�1, 2NL�2, . . ., and 20 operation nodes in the 2nd, 3rd, . . ., and
eventual layers, respectively. Every operation node y is operated
by a set of defined functions to connect to two front nodal inputs
of xi and xj with weights of wi and wj:

y ¼ F wi;wj; xi; xj
� �

¼ one of

f1 ¼ wixi

f2 ¼ wixið Þ þ wjxj
� �

f3 ¼ wixið Þ wjxj
� �

f4 ¼ wixið Þ= wjxj
� �

f5 ¼ wixij jwjxj

f6 ¼ sin wixið Þ
f7 ¼ cos wixið Þ
f8 ¼ exp wixið Þ
f9 ¼ log wixij j
. . . . . . . . .

fNF ¼ 1
sin wi�xið Þþcos wj�xjð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

: ð2Þ

This paper adopted the first nine functions in Eq. (2) for every F
selection. The f1 is designed to inherit the left-hand side front nodes
with wi scaling and it is a one-handed operator (use ‘‘C” to repre-
sent). f2 indicates a weighted ‘‘+” operator and it is a two-handed
operator. f3, and f4 are both two-handed operators related to ‘‘�”
and ‘‘/” respectively. f5 is a two-handed power(‘‘^”) operator; f6, f7,
f8, and f9 are all one-handed functional operators (‘‘sin”, ‘‘cos”,
‘‘exp”, and ‘‘log”). Generally, each adopted function should be un-
ique. However, exceptions are permitted based on user require-
ments. The last function in Eq. (2) is an example of a case in
which the user has confidence in the role of a lucky guess function.
Although such function can be reproduced by combinations of the
4th, 5th, 1st, and 3rd equations, assigning such an appropriate func-
tion as a candidate can greatly improve convergence speed.

An answer O of a two-layered WOS can be represented as

O ¼ y ¼ F1 w1;w2; F2 w3;w4; P1; P2ð Þ; F3 w5;w6; P3; P4ð Þf g: ð3Þ

For instance, a WOS example output might be (see Fig. 3):

O ¼ f4 0:1; 0:2 ; f 2 0:3; �0:4; P1 P2ð Þf

f 3 0:5 0:6 1 P3ð Þg ¼ 0:3P1 � 0:4P2

0:5P4 � 0:6P3
: ð4Þ

In terms of GP, the output might be (see Fig. 3):

O ¼ P1 þ P2

1:5� P3
: ð5Þ

The coefficient term in Eq. (5) is produced by setting a coefficient for
a parameter node corresponding to the unit parameter ‘‘1” in WOS.
However, such a coefficient costs (wastes) a branch of the structure
(tree). While this optimum coefficient exceeds the search domain,
GP will identify other derivatives to cover this optimum coefficient.
Numerically, a large coefficient in WOS may be reproduced by
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Fig. 1. Weighted operation structure.
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Fig. 2. Weighted operation structure and genetic programming elements.
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