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a b s t r a c t

A neural network approach is presented for solving mathematical programs with equilibrium constraints
(MPEC). The proposed neural network is proved to be Lyapunov stable and capable of generating approx-
imal optimal solution to the MPEC problem. The asymptotic properties of the neural network are ana-
lyzed and the condition for asymptotic stability, solution feasibility and solution optimality are derived
and the transient behavior of the neural network is simulated and the validity of the network is verified
with numerical examples.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical program with equilibrium constraints
(MPEC) is an optimization problem, whose constraints include var-
iational inequalities (Harker & Pang, 1988). Such problems play an
important role, for example, in the design of transportation net-
work (Harker & Pang, 1990), in economic modelling (Tobin,
1992), and in shape optimization (Haslinger & Neittaanmaki,
1988). Further material on the MPEC problem and its applications
can also be found in Luo, Pang, and Ralph (1996).

We are interested in algorithms for solving the MPEC problem,
which is known to be a very difficult problem, being non-smooth
and non-convex also under very favourable assumptions. In fact,
few successful numerical methods have been proposed to solve
this kind of problem (Facchinei, Jiang, & Qi, 1999).

In recent years, neural computing has become an important
means to provide real-time solutions to some optimization prob-
lems, especially large-scale problems. In fact, there have been var-
ious types of neural networks proposed for solving linear
programs, nonlinear programs, variational inequalities et al., we
cite for example (Chen, Leung, & Leung, 2002; Kennedy & Chua,
1998; Lan & Wen, 2007; Xia & Wang, 1998; Zhang & Constanti-
nides, 1992). Compared with classical optimization approaches,
the prominent advantage of neural computing is that it can con-
verge to the equilibrium point (optimal solution) rapidly, and this
advantage motivates us to propose an efficient algorithm, which is
based on the neural network approach, for the MPEC problem. It is

noted that there are few reports on solving the MPEC problem
using neural network approach.

Our strategy can be outlined as follows. By using the
Kuhn–Tucker optimality conditions for the variational inequality
constraints, we reformulate the MPEC problem as a normal
non-smoothly constraints optimization problem. Then, to avoid
the difficulty of the non-smooth constraints, we smooth the non-
smoothly constraints optimization problem and propose a novel
neural network for the smoothed program. Towards these ends,
the rest of the paper is organized as follows. In Section 2, we will
firstly give some preliminaries. In Section 3, a smoothing technique
is introduced by which the MPEC problem is approximated by a se-
quence of smooth optimization problems. Section 4 is devoted to
propose a neural network for solving the smoothed problem and
derive the conditions for asymptotic stability, solution feasibility
and solution optimality. Numerical examples are given in Section
5. Finally we conclude our paper.

2. Problem statement and preliminaries

We consider the following mathematical program with equilib-
rium constraints

min f ðx; yÞ
s:t: hðxÞ 6 0

y 2 SðxÞ
ð1Þ

where x 2 Rn, y 2 Rm, and f: Rn�m ? R, h: Rn ? Rp are continuous dif-
ferentiable, for each x 2 Xad = {x 2 Rn: h(x) 6 0} and for a continu-
ously differentiable function F: Rn+m ? Rm, S(x) is the solution set
of the variational inequality (VI) defined by the pair (F(x, �),C(x)),
i.e., y 2 S(x) if and only if y 2 C(x) and
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ðv � yÞT Fðx; yÞP 0 for all v 2 CðxÞ ð2Þ

C(x) is defined by

CðxÞ ¼ y 2 Rm : giðx; yÞP 0; i ¼ 1; . . . ; l
� �

ð3Þ

with g: Rn+m ? Rl twice continuously differentiable and concave in
the variable y. We indicate by I(x,y) the set of active constraints, i.e.,

Iðx; yÞ ¼ fi : giðx; yÞ ¼ 0g

We make the following assumptions (see also Facchinei et al.,
1999):

A1. Xad # Rn is nonempty and compact and C(x) R ; for all x 2 A,
where A is an open set containing Xad.

A2. C(x) is uniformly compact on A, i.e., there exists an open
bounded set B # Rm, such that for all x 2 A

CðxÞ# B

A3. F is uniformly strongly monotone with respect to y on A � B,
i.e., there exists a constant a > 0 such that for all (x,y) 2 A � B
and d 2 Rm,

dTryFðx; yÞd P akdk2

A4. At each x 2 Xad and y 2 S(x), the partial gradients rygi(x,y),
i 2 I(x,y) are linearly independent.

Based on the above assumptions, the MPEC problem (1) can be
reformulated as the following standard nonlinear program (Facchi-
nei et al., 1999)

min f ðx; yÞ
s:t: hðxÞ 6 0

Fðx; yÞ � rygðx; yÞk ¼ 0

gðx; yÞP 0; k P 0; kT gðx; yÞ ¼ 0

ð4Þ

Problem (4) is non-convex and non-differentiable, moreover the
regularity assumptions which are needed to successfully handle
smooth optimization problems are never satisfied (Luo et al.,
1996), which brings great obstacle to use the neural network ap-
proach to solve Problem (4).

We are then forced to further reformulate the MPEC problem
(1). To this end we consider the following non-smooth equivalent
reformulation of Problem (4)

min f ðx; yÞ
s:t: hðxÞ 6 0

Fðx; yÞ � rygðx; yÞk ¼ 0
gðx; yÞ � z ¼ 0
� 2 minðz; kÞ ¼ 0

ð5Þ

where z 2 Rl and the min operator is applied componentwise to the
vectors z and k. The reason for the introduce of the multiplicative
factor �2 before min operator will become apparent shortly. In
the following content, we will introduce a smooth method for Prob-
lem (5).

3. Smoothing problem

Let l 2 R be a parameter. Define the function /l: R2 ? R by

/lða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ 4l2

q
� ðaþ bÞ

The above function /l(a,b) has the property that /l(a,b) = 0 if
and only if a P 0, b P 0, ab = l2, and for every l R 0, /l(a,b) is
smooth for every a, b. Further, for every (a,b), liml?0/-
l(a,b) = � 2 min(a,b). Then, the function is therefore a smooth per-
turbation of the min function (Facchinei et al., 1999).

Based on the definition of /l(a,b), it is obvious that Problem (5)
can be approximated by

min f ðx; yÞ
s:t: hðxÞ 6 0

Fðx; yÞ � rygðx; yÞk ¼ 0
gðx; yÞ � z ¼ 0
/lðz; kÞ ¼ ð/lðz1; k1Þ; . . . ;/lðzl; klÞÞ ¼ 0

ð6Þ

Following Problem (6), we overcome the difficulty that Problem
(4) dose not satisfy any regularity assumptions, which are needed
for successfully handling smooth optimization problems, and pave
the way for using neural network approach to solve Problem (4). To
make the discussion simpler, we introduce the following notations

Gðx; y; z; kÞ ¼ hðxÞ; Hðx; y; z; kÞ ¼
Fðx; yÞ � rygðx; yÞk

gðx; yÞ � z
/lðz; kÞ

0
B@

1
CA

Let w = (x,y,z,k), then we can rewrite the above Problem (6) more
compactly as

min f ðwÞ
s:t: GsðwÞ 6 0; s ¼ 1; . . . ;p

HkðwÞ ¼ 0; k ¼ 1; . . . ;mþ lþ l
ð7Þ

Definition 1. Let w be a feasible point of Problem (7) and
L ¼ l : Gsðx0Þ ¼ 0; s ¼ 1; . . . ; pf g. We say that w is a regular point if
the gradients rH1(x0), . . . ,rHm+l+l(w) and rGs(w), s 2 L are linearly
independent.

The following result gives the relationship between the solution of
Problem (7) and that of the MPEC problem (1).

Theorem 1 (Facchinei et al. (1999)). Let wk and lk ? 0 be two
sequence such that, for every k, wk is a stationary point for Problem
(7). Suppose that {wk} ? w*. Then w* = (x*, y*, z*,k*) is a strong C-
stationary point of the MPEC problem (1).

4. Neural network for MPEC problem

4.1. Definition of the neural network

We can define the following Lagrange function of Problem (7)

Lðw;Y; c; rÞ ¼ f ðwÞ þ
Xmþlþl

k¼1

ckHkðwÞ þ
Xp

s¼1

rs GsðwÞ þ Y2
s

h i

where Y 2 Rp is slack variable and c 2 Rm+l+l, s 2 Rp are referred as
the Lagrange multiplier.

Now, our aim is to design a neural network that will settle
down to an equilibrium, which is also a stationary point of the
Lagrange function L(w,Y,c,r). We can use the gradient system
to construct the following neural network for solving the MPEC
problem (1):

ðMPECNNÞ

dw
dt ¼ �rwLðw;Y ; c; rÞ
dY
dt ¼ �rY Lðw;Y ; c; rÞ

dc
dt ¼ rcLðw;Y ; c; rÞ
dr
dt ¼ rrLðw;Y; c; rÞ

8>>>><
>>>>:

ð8Þ

or, in component form,

dwj

dt
¼ � @f

@wj
�
Xmþlþl

k¼1

ck
@Hk

@wj
�
Xp

s¼1

ls
@Gs

@wj
; j ¼ 1; . . . ;mþ nþ lþ l

dYs

dt
¼ �2rsYs; s ¼ 1; . . . ;p

dck

dt
¼ HkðwÞ; k ¼ 1; . . . ;mþ lþ l

drs

dt
¼ GsðwÞ þ Y2

s ; s ¼ 1; . . . ; p
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