HDAC Dependent Transcriptional Repression of *Bmp-7* Potentiates TGF- β Mediated Renal Fibrosis in Obstructive Uropathy

Scott R. Manson, Joseph B. Song, Keith A. Hruska and Paul F. Austin*

From the Division of Urology, Department of Surgery and Division of Pediatric Nephrology, Departments of Medicine and Pediatrics (KAH), Washington University, St. Louis Children's Hospital, St. Louis, Missouri

Abbreviations and Acronyms

 α -SMA = α -smooth muscle actin BMP-7 = bone morphogenicprotein 7 $COL|\alpha 1 = type | collagen, \alpha 1$ chain ELISA = enzyme-linkedimmunosorbent assay GAPDH = glyceraldehyde-3phosphate dehydrogenase HDAC = histone deacetylaseIMCD = inner medullary collecting duct PCR = polymerase chain reaction RT-PCR = reversetranscriptase-PCR SMAD = SMA- and MAD-related protein $TGF-\beta = transforming growth$ factor-B TSA = trichostatin AUU0 = unilateral ureteral obstruction

Accepted for publication June 27, 2013. Study received institutional animal care and use committee approval.

Supported by NIH/NIDDK Grant 1R01DK096177. * Correspondence: Washington University, 660 South Euclid Ave., Campus Box 8242, St. Louis, Missouri 63110 (telephone: 314-454-6034; FAX: 314-454-2876; e-mail: <u>austinp@wustl.edu</u>). **Purpose**: Recombinant BMP-7 inhibits the pathogenesis of renal injury in response to various stimuli. However, little is known about the molecular regulation of endogenous BMP-7 and its renal protective functions. We examined transcriptional regulation of Bmp-7 and its role in the pathogenesis of renal injury resulting from urinary tract dysfunction.

Materials and Methods: Obstruction induced renal injury was modeled in vivo in mice by unilateral ureteral obstruction and in vitro in primary kidney cells by treatment with transforming growth factor- β , a profibrotic cytokine that is increased in the obstructed kidney.

Results: Unilateral ureteral obstruction resulted in the loss of BMP-7 expression in conjunction with histone deacetylation and transcriptional repression of the *Bmp*-7 promoter. The histone deacetylase inhibitor trichostatin A stimulated *Bmp*-7 expression in primary kidney cells. Trichostatin A also inhibited the expression of transforming growth factor- β dependent profibrotic genes in a manner that depended on BMP receptor signaling. These findings extended to the obstructed kidney in vivo, in which trichostatin A treatment restored the expression of *Bmp*-7 along with BMP-7 mediated suppression of transforming growth factor- β dependent signaling pathways. Finally, trichostatin A stimulated activation of the BMP-7 pathway the ameliorated obstruction induced renal injury by preventing disruption of the renal architecture and the development of renal fibrosis.

Conclusions: These findings show that histone deacetylase dependent repression of Bmp-7 transcription is a critical event during the pathogenesis of renal injury in obstructive uropathy. Accordingly, treatment with histone deacetylase inhibitors represents a potentially effective strategy to restore BMP-7 expression and its renal protective functions during treatment of obstructive uropathy.

Key Words: kidney, ureteral obstruction, bone morphogenetic protein 7, fibrosis, histone deacetylase inhibitors

Obstructive uropathy is a leading cause of pediatric kidney disease, accounting for 16.5% of kidney transplants in children.¹ While the kidney has innate repair mechanisms

that can restore renal structure and function after acute injury due to urinary obstruction and other stimuli,²⁻⁴ the clinical manifestation of chronic renal injury stems in part from a dysregulated wound healing response, which results in renal fibrosis.^{3,4} At the molecular level activation of the TGF- β pathway is classically described as a critical pathological step in the development of renal fibrosis that promotes apoptosis, cellular dedifferentiation, myofibroblast activation and matrix protein synthesis.⁵ Given that these processes are involved in injury repair,⁴ it is likely that TGF- β also has a physiological role in the early stages of injury repair but when TGF- β activity is dysregulated, it instead promotes disease progression. Nonetheless, mechanisms that counter regulate TGF- β activity during the response to renal injury are poorly understood.

Interestingly, another member of the TGF- β superfamily, BMP-7, inhibits TGF- β dependent signaling pathways.⁶ The inhibitory effects of BMP-7 are mediated by the activation of SMAD1/5/8 proteins, which in turn suppress the activity of TGF- β dependent transcription factors and their ability to stimulate profibrotic gene expression.^{7,8} Treatment with recombinant BMP-7 inhibits the development of renal injury in response to urinary obstruction and various other stimuli.⁶⁻¹⁷

While the renal protective effects of recombinant BMP-7 are well established, at our laboratory it was recently noted that endogenous BMP-7 activity is required for cessation of the TGF- β response along with the restoration of renal architecture and the resolution of fibrotic changes in the kidney that occur during the repair of obstruction induced renal injury.⁸ The importance of BMP-7 in the repair of renal injury was further supported by studies at our laboratory and by others showing that treatment with recombinant BMP-7 can reverse the progression of chronic renal injury.⁸⁻¹⁰

Despite the biological importance of BMP-7 little is known about the molecular mechanisms that regulate endogenous BMP-7 activity and its renal protective functions. However, at our laboratory it was found that BMP-7 expression is up-regulated during kidney repair after acute obstruction induced renal injury.^{7,8} Conversely, chronic renal injury in response to various stimuli, including urinary obstruction, is associated with loss of BMP-7 expression.^{8,11–13,18} Along with the previous findings this suggests that loss of BMP-7 expression is a critical event during the pathogenesis of chronic renal injury that may lead to the suppression of BMP-7 dependent repair mechanisms and in part the persistent, inappropriate activation of TGF- β dependent profibrotic pathways.

In this study we delineated the molecular mechanisms that lead to loss of BMP-7 expression in the obstructed kidney and examined their potential importance for the treatment of obstructive uropathy and other conditions that lead to chronic renal injury.

MATERIALS AND METHODS

Unilateral Ureteral Obstruction

UUO was created in 8 to 10-week-old C57BL/6J mice by placing a microvascular clamp on the proximal ureter.² When indicated, mice were treated with 500 μ g/kg TSA (Sigma®) daily by intraperitoneal injection. All procedures were approved by institutional review.

Histology

Trichrome staining was done using the AccustainTM Masson trichrome staining kit. Immunofluorescence was performed using rabbit anti-BMP-7 and rabbit anti-type IV collagen (Abcam®), as previously described.⁸ Tubular volume was quantified in samples stained for type IV collagen by digitally overlaying a grid on microscopy images and determining the percent of grid points located in the interstitial/tubular regions.¹⁴

Collagen Quantification

Kidney samples were hydrolyzed and hydroxyproline was quantified by comparison to standards in a colorimetric reaction, as previously described.¹⁹ Collagen content was calculated using the approximation that collagen contains approximately 14% (weight per weight) hydroxyproline. Values are expressed as a ratio to the dry tissue weight of the sample.

BMP-7 Enzyme-Linked Immunosorbent Assay

Kidneys were pulverized in liquid nitrogen. They were homogenized in 100 mM tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton[®], 0.5% sodium deoxycholate, 1 mM ethylenediaminetetraacetic acid, 1 mM ethylene glycol tetraacetic acid and Complete Protease Inhibitor Cocktail (Roche, Mannheim, Germany). Samples were normalized to total protein content using the Pierce[™] BCA Protein Assay Kit. BMP-7 levels were quantified using the BMP-7 ELISA Kit (R&D Systems[®]) according to product specifications.

Reverse Transcription-PCR

Kidneys were pulverized in liquid nitrogen and homogenized in TRIzol®. RNA was isolated. RT-PCR was done using the SuperScriptTM RT-PCR system with primers specific for BMP-7 (5'-GAAAACAGCAGCAGTGACCA-3' and 5'-GCTCAGGAGAGGTTGGTCTG-3'), TGF- β 1 (5'-CA AACGTCGGGGCGACCTGG-3' and 5'-TGCTCCACCTTG GGCTTGCG-3'), α -SMA (5'-CCCTGAGACGCTGCTCCAG CTA-3' and 5'-GGCATAGAGGGACAGCACAGCCT-3'), COLI α 1 (5'-TGGTCCTGCCGGTCCTCCTG-3' and 5'-ACA CATTGGGGGTAGGAACA-3'), and GAPDH (5'-AACTTTG GCATTGTGGAAGG-3' and 5'-ACACATTGGGGGTAGGA ACA-3'). The relative intensity of PCR bands was quantified using ImageJ (<u>http://rsbweb.nih.gov/ij/</u>) and normalized as a ratio to GAPDH levels.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation was performed using the Imprint[®] Chromatin Immunoprecipitation Kit. DNA was sheared to 2 kb fragments by sonication. Download English Version:

https://daneshyari.com/en/article/3863602

Download Persian Version:

https://daneshyari.com/article/3863602

Daneshyari.com